RESUMEN
The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has been a mainstay of cytometry-from the colorimetric Feulgen stain to smart fluorescent agents with tuned functionality. The level of nuclear structure and function at which the probe aims to readout, or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities and analytical methods. These methods are invariably limited in terms of the resolution attainable versus the volume occupied by targeted chromatin structures. The scalar challenge arises from the need to understand the extent and different levels of compaction of genomic DNA and how such structures can be re-modeled, reported, or even perturbed by both probes and drugs. Nuclear cytometry can report on the complex levels of chromatin order, disorder, disassembly, and even active disruption by probes and drugs. Nuclear probes can report defining features of clinical and therapeutic interest as in NETosis and other cell death processes. New cytometric approaches continue to bridge the scalar challenges of analyzing chromatin organization. Advances in super-resolution microscopy address the resolution and depth of analysis issues in cellular systems. Typical of recent insights into chromatin organization enabled by exploiting a DNA interacting probe is ChromEM tomography (ChromEMT). ChromEMT uses the unique properties of the anthraquinone-based cytometric dye DRAQ5™ to reveal that local and global 3D chromatin structures effect differences in compaction. The focus of this review is nuclear and chromatin cytometry, with linked reference to DNA targeting probes and drugs as exemplified by the anthracenediones.
Asunto(s)
Núcleo Celular/genética , Cromatina/genética , Citometría de Flujo/métodos , Nucleosomas/genética , ADN/genética , Histonas/genética , Humanos , Microscopía FluorescenteRESUMEN
Structural features from the anticancer prodrug nemorubicin (MMDX) and the DNA-binding molecule DRAQ5™ were used to prepare anthraquinone-based compounds, which were assessed for their potential to interrogate cytochrome P450 (CYP) functional activity and localisation. 1,4-disubstituted anthraquinone 8 was shown to be 5-fold more potent in EJ138 bladder cancer cells after CYP1A2 bioactivation. In contrast, 1,5-bis((2-morpholinoethyl)amino) substituted anthraquinone 10 was not CYP-bioactivated but was shown to be fluorescent and subsequently photo-activated by a light pulse (at a bandwidth 532-587â¯nm), resulting in punctuated foci accumulation in the cytoplasm. It also showed low toxicity in human osteosarcoma cells. These combined properties provide an interesting prospective approach for opto-tagging single or a sub-population of cells and seeking their location without the need for continuous monitoring.
Asunto(s)
Antraquinonas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Colorantes Fluorescentes/metabolismo , Morfolinas/metabolismo , Antraquinonas/síntesis química , Antraquinonas/química , Antraquinonas/toxicidad , Línea Celular Tumoral , Fluorescencia , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Humanos , Hidroxilación , Morfolinas/síntesis química , Morfolinas/química , Morfolinas/toxicidadRESUMEN
BACKGROUND: OCT1002 is a unidirectional hypoxia-activated prodrug (uHAP) OCT1002 that can target hypoxic tumor cells. Hypoxia is a common feature in prostate tumors and is known to drive disease progression and metastasis. It is, therefore, a rational therapeutic strategy to directly target hypoxic tumor cells in an attempt to improve treatment for this disease. Here we tested OCT1002 alone and in combination with standard-of-care agents in hypoxic models of castrate-resistant prostate cancer (CRPC). METHODS: The effect of OCT1002 on tumor growth and vasculature was measured using murine PC3 xenograft and dorsal skin fold (DSF) window chamber models. The effects of abiraterone, docetaxel, and cabazitaxel, both singly and in combination with OCT1002, were also compared. RESULTS: The hypoxia-targeting ability of OCT1002 effectively controls PC3 tumor growth. The effect was evident for at least 42 days after exposure to a single dose (30 mg/kg) and was comparable to, or better than, drugs currently used in the clinic. In DSF experiments OCT1002 caused vascular collapse in the PC3 tumors and inhibited the revascularization seen in controls. In this model OCT1002 also enhanced the anti-tumor effects of abiraterone, cabazitaxel, and docetaxel; an effect which was accompanied by a more prolonged reduction in tumor vasculature density. CONCLUSIONS: These studies provide the first evidence that OCT1002 can be an effective agent in treating hypoxic, castrate-resistant prostate tumors, either singly or in combination with established chemotherapeutics for prostate cancer.
Asunto(s)
Antraquinonas/farmacología , Etilenodiaminas/farmacología , Profármacos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Animales , Antraquinonas/farmacocinética , Procesos de Crecimiento Celular/efectos de los fármacos , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Etilenodiaminas/farmacocinética , Humanos , Masculino , Ratones , Ratones Desnudos , Profármacos/farmacocinética , Neoplasias de la Próstata Resistentes a la Castración/irrigación sanguínea , Neoplasias de la Próstata Resistentes a la Castración/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
MOTIVATION: Experimental reproducibility is fundamental to the progress of science. Irreproducible research decreases the efficiency of basic biological research and drug discovery and impedes experimental data reuse. A major contributing factor to irreproducibility is difficulty in interpreting complex experimental methodologies and designs from written text and in assessing variations among different experiments. Current bioinformatics initiatives either are focused on computational research reproducibility (i.e. data analysis) or laboratory information management systems. Here, we present a software tool, ProtocolNavigator, which addresses the largely overlooked challenges of interpretation and assessment. It provides a biologist-friendly open-source emulation-based tool for designing, documenting and reproducing biological experiments. AVAILABILITY AND IMPLEMENTATION: ProtocolNavigator was implemented in Python 2.7, using the wx module to build the graphical user interface. It is a platform-independent software and freely available from http://protocolnavigator.org/index.html under the GPL v2 license.
Asunto(s)
Proyectos de Investigación , Programas Informáticos , Documentación , Nanopartículas/análisis , Neoplasias/química , Reproducibilidad de los ResultadosRESUMEN
Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell-lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the ß-actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP-DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP-DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell-micro-community, phenotypically modified in the tooth (the "biology"); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high-content imaging (the biology in a "multiplex" format).
Asunto(s)
Pulpa Dental/citología , Citometría de Flujo/métodos , Células Madre Mesenquimatosas/citología , Trasplante de Células Madre , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Proteínas Fluorescentes Verdes , Mandíbula/citología , Técnicas de Cultivo de Órganos/métodos , Ratas , Células Madre/citologíaRESUMEN
Polysialylation of neural cell adhesion molecule (NCAM) in small-cell lung cancer (SCLC) is thought to regulate NCAM-mediated cell-surface interactions, imparting antiadhesive properties to cells. However, SCLC cells in culture demonstrate anchorage-independent growth and spontaneously generate adherent forms. Here, the ability of polySia-NCAM to influence cell proliferation and adherence is unclear. We analyzed live SCLC cell polySia-NCAM expression by flow cytometry, using the novel combination of a polySia antibody-mimetic eGFP-tagged endosialidase and the viability dye DRAQ7. Enrichment for adherence (<30 population doublings) in SCLC cell lines resolved populations with increased (SHP-77 and COR-L279) or negligible (NCI-H69) polysialylation compared with nonadherent parent populations. Adherent forms retained NCAM expression as confirmed by immunofluorescence and immunoblotting. Initial transition to adherence and loss of polysialylation in NCI-H69 was linked to a reduced proliferation rate with no increase in cell death. This reduced proliferation rate was reiterated in vivo as determined by the growth of noninvasive subcutaneous xenografts in mice. Continued selection for enhanced substrate adherence in NCI-H69 (>150 population doublings) resolved cells with stable re-expression of polySia and increased growth rates both in vitro and in vivo. Endoneuraminidase removal of polySia from re-expressing cells showed that rapid adherence to extracellular matrix components was functionally independent of polySia. PolySia expression was not altered when isolated adherent forms underwent enforced cell-cell contact in three-dimensional culture. Coculture of polySia expression variants modulated overall polySia expression profiles indicating an influence of SCLC microcommunity composition independent of substrate adherence potential. We conclude that an obligatory linkage between substrate adherence potential and polySia expression is rejected for SCLC cells. We suggest that a degree of homeostasis operates to regulate polysialylation within heterogeneous cell populations. The findings suggest a new model for SCLC progression while the application of live cell profiling of polysialylation could be used to assess polySia-NCAM-targeted therapies.
Asunto(s)
Neoplasias Pulmonares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Matriz Extracelular/metabolismo , Citometría de Flujo , Glicosilación , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Procesamiento Proteico-Postraduccional , Carcinoma Pulmonar de Células Pequeñas/patologíaRESUMEN
We outline a simple approach involving instrument setup and calibration for the analysis of Hoechst dye 33342-loading in human cell lines for exploring heterogeneity in dye efflux efficiency and the status of side population (SP) A549 lung cancer cells. Dual excitation 488 nm/multiline UV (351-364 nm) flow cytometry was used to confirm ABCG2-specific inhibition of dye efflux using Fumitremorgin C. Transporter gene expression, assayed by qRT-PCR, confirmed higher expression of ABCG2 versus ABCB1, reiterated in a cloned subline. Coexpression of aldehyde dehydrogenase genes ranked as aldehyde dehydrogenase class 1A1 (ALDH1A1) > ALDH3A1 > ALDH3, relative expression of all genes was again reiterated in a cloned subline. Permeabilized cells were used to create red:violet (660:405 nm Em wavelengths) ratiometric references for mapping temporal changes in Hoechst 33342-DNA fluorescence in live cells. A live cell "kinetic SP gate" tracked progressive dye loading of the whole population and coapplication of the far red (>695 nm wavelength) fluorescing dye DRAQ7 enabled viable cell gating. Kinetic gating revealed a continuum for dye accumulation suggesting that SP enumeration is critically dependent upon the nonlinear relationship of the spectral shift with progressive dye-DNA binding and thus requires accurate definition. To this end, permeabilized cell reference samples permit reproducible instrument setup, guide gate boundaries for SP and compromised cells, and offer a simple means of comparing SP enumeration across laboratory sites/platforms. Our approach reports the dynamic range for the spectral shift, revealing noninformative staining conditions and explaining a source of variability for SP enumeration. We suggest that live cell kinetic sorting of all cells with the same dye:DNA load but with differences in efflux capacity can be used to explore drug resistance capability without prejudice. The SP phenotype should be regarded as a kinetic parameter and not a fixed characteristic--critical for functional assay design and the interpretation of heterogeneity.
Asunto(s)
Adenocarcinoma Bronquioloalveolar/patología , Bencimidazoles/metabolismo , ADN de Neoplasias/metabolismo , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Neoplasias Pulmonares/patología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenocarcinoma Bronquioloalveolar/metabolismo , Aldehído Deshidrogenasa/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Humanos , Cinética , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , FenotipoRESUMEN
Discerning the extent of biologically relevant heterogeneity presents unique challenges to both microscopy and flow cytometry. Micro-environmental influences and stochastic changes in cellular behaviour can act to mask the origins of both progression and therapeutic resistance in tumour cell systems. In part the dimensionality of different and frequently metastable states can be assessed by multi-parameter flow cytometry with unparalleled statistical robustness. Complementary application of imaging can provide valuable insights into the complex temporal changes that can occur in cell micro-communities either spontaneously or in response to selection pressure. With an extensive range of methodologies for the labelling of cells there are multiple options for tracking cells, defining fate and the re-construction of provenance and behavioural history. The challenge is highlighted by attempts to identify the critical glycosylation events modifying the function of cell surface proteins. Central to a cytometric approach is the availability of methods that reveal cell health and are compatible with the detection of cell surface changes within dynamic micro-communities. The review briefly addresses the options for sensing cell health and the co-application of an antibody mimetic for detection of cell surface glycoconjugate expression accessible for both imaging and flow cytometry.
Asunto(s)
Fenómenos Fisiológicos Celulares , Citometría de Flujo/métodos , Glicoconjugados/biosíntesis , Microscopía/métodos , Procesamiento de Imagen Asistido por Computador , Coloración y Etiquetado/métodos , Factores de TiempoRESUMEN
The cell cycle, with its highly conserved features, is a fundamental driver for the temporal control of cell proliferation-while abnormal control and modulation of the cell cycle are characteristic of tumor cells. The principal aim in cancer biology is to seek an understanding of the origin and nature of innate and acquired heterogeneity at the cellular level, driven principally by temporal and functional asynchrony. A major bottleneck when mathematically modeling these biological systems is the lack of interlinked structured experimental data. This often results in the in silico models failing to translate the specific hypothesis into parameterized terms that enable robust validation and hence would produce suitable prediction tools rather than just simulation tools. The focus has been on linking data originating from different cytometric platforms and cell-based event analysis to inform and constrain the input parameters of a compartmental cell cycle model, hence partly measuring and deconvolving cell cycle heterogeneity within a tumor population. Our work has addressed the concept that the interoperability of cytometric data, derived from different cytometry platforms, can complement as well as enhance cellular parameters space, thus providing a more broader and in-depth view of the cellular systems. The initial aim was to enable the cell cycle model to deliver an improved integrated simulation of the well-defined and constrained biological system. From a modeling perspective, such a cross platform approach has provided a paradigm shift from conventional cross-validation approaches, and from a bioinformatics perspective, novel computational methodology has been introduced for integrating and mapping continuous data with cross-sectional data. This establishes the foundation for developing predictive models and in silico tracking and prediction of tumor progression
Asunto(s)
Ciclo Celular/fisiología , Citometría de Flujo/métodos , Neoplasias/patología , Línea Celular Tumoral , Proliferación Celular , Biología Computacional , Simulación por Computador , Humanos , Microscopía , Modelos Biológicos , OsteosarcomaRESUMEN
In vivo synthesis of peptides by bacterial expression has developed into a reliable alternative to solid-phase peptide synthesis. A significant drawback of in vivo methods is the difficulty with which gene products can be modified post-translationally. Here, we present a method for the facile modification of peptides generated in bacterial hosts after cyanogen bromide cleavage at C-terminal methionines. Reaction of the resulting homoserine lactones with propargylamine allows efficient and selective modification with a wide variety of chemicals such as fluorescent dyes, biotin derivatives, polyprenyls, lipids, polysaccharides, or peptides. Attachment of the cell penetrating peptide octa-arginine (R(8)) to peptides derived from the proapoptotic tumor suppressor Bak BH3 led to efficient cellular uptake and subsequent cytochrome c release from mitochondria, culminating in induction of apoptosis similar to that observed with peptides linked to R(8) via the peptide backbone. These results highlight the significant potential for use of such tools in live cells.
Asunto(s)
Péptidos/síntesis química , Péptidos/farmacocinética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , Secuencia de Aminoácidos , Apoptosis , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Bromuro de Cianógeno/química , Citocromos c/metabolismo , Humanos , Datos de Secuencia Molecular , Oligopéptidos/química , Fragmentos de Péptidos/química , Proteínas Proto-Oncogénicas/química , Proteínas Recombinantes de Fusión/genética , Proteína Destructora del Antagonista Homólogo bcl-2/químicaRESUMEN
We present a new approach to the handling and interrogating of large flow cytometry data where cell status and function can be described, at the population level, by global descriptors such as distribution mean or co-efficient of variation experimental data. Here we link the "real" data to initialise a computer simulation of the cell cycle that mimics the evolution of individual cells within a larger population and simulates the associated changes in fluorescence intensity of functional reporters. The model is based on stochastic formulations of cell cycle progression and cell division and uses evolutionary algorithms, allied to further experimental data sets, to optimise the system variables. At the population level, the in-silico cells provide the same statistical distributions of fluorescence as their real counterparts; in addition the model maintains information at the single cell level. The cell model is demonstrated in the analysis of cell cycle perturbation in human osteosarcoma tumour cells, using the topoisomerase II inhibitor, ICRF-193. The simulation gives a continuous temporal description of the pharmacodynamics between discrete experimental analysis points with a 24 hour interval; providing quantitative assessment of inter-mitotic time variation, drug interaction time constants and sub-population fractions within normal and polyploid cell cycles. Repeated simulations indicate a model accuracy of +/-5%. The development of a simulated cell model, initialized and calibrated by reference to experimental data, provides an analysis tool in which biological knowledge can be obtained directly via interrogation of the in-silico cell population. It is envisaged that this approach to the study of cell biology by simulating a virtual cell population pertinent to the data available can be applied to "generic" cell-based outputs including experimental data from imaging platforms.
Asunto(s)
Ciclo Celular/fisiología , Citometría de Flujo/métodos , Modelos Biológicos , Biología de Sistemas/métodos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Simulación por Computador , Dicetopiperazinas , Humanos , Modelos Estadísticos , Osteosarcoma , Piperazinas/farmacologíaRESUMEN
Aquaporins are required by cells to enable fast adaptation to volume and osmotic changes, as well as microenvironmental metabolic stimuli. Aquaglyceroporins play a crucial role in supplying cancer cells with glycerol for metabolic needs. Here, we show that AQP3 is differentially expressed in cells of a prostate cancer panel. AQP3 is located at the cell membrane and cytoplasm of LNCaP cell while being exclusively expressed in the cytoplasm of Du145 and PC3 cells. LNCaP cells show enhanced hypoxia growth; Du145 and PC3 cells display stress factors, indicating a crucial role for AQP3 at the plasma membrane in adaptation to hypoxia. Hypoxia, both acute and chronic affected AQP3's cellular localization. These outcomes were validated using a machine learning classification approach of the three cell lines and of the six normoxic or hypoxic conditions. Classifiers trained on morphological features derived from cytoskeletal and nuclear labeling alongside corresponding texture features could uniquely identify each individual cell line and the corresponding hypoxia exposure. Cytoskeletal features were 70-90% accurate, while nuclear features allowed for 55-70% accuracy. Cellular texture features (73.9% accuracy) were a stronger predictor of the hypoxic load than the AQP3 distribution (60.3%).
Asunto(s)
Acuaporina 3/genética , Neoplasias de la Próstata/genética , Acuaporina 3/metabolismo , Ciclo Celular/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Aprendizaje Automático , Masculino , Neoplasias de la Próstata/patología , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
BACKGROUND: Osteosarcoma is an aggressive and painful bone neoplasm in dogs. Previous studies have reported epidemiological associations suggesting that large body mass, long bone length and the genetics of certain breeds including the Rottweiler are associated with elevated osteosarcoma risk. However, these studies were often limited by selection bias and confounding factors, and have rarely offered insights into breed-associated protection for osteosarcoma. The current study includes 1756 appendicular and axial osteosarcoma cases presenting to VPG Histology (Bristol, UK) compared against a control population of 905,211 dogs without osteosarcoma from primary care electronic patient records in the VetCompass™ dataset. METHODS AND STUDY DESIGN: Retrospective, case-control study. Multivariable logistic regression analysis explored associations between demographic risk factors (including breed, chondrodystrophy, age, sex/neuter status, skull-shape, and body mass) and osteosarcoma of all anatomical sites. RESULTS: We identified several breeds with increased and reduced odds of osteosarcoma. At highest risk were the Rottweiler and Great Dane, with > 10 times the odds of osteosarcoma compared with crossbreds, and the Rhodesian Ridgeback, which has not featured in previous lists of at-risk breeds for osteosarcoma, and had an odds ratio of 11.31 (95% confidence interval 7.37-17.35). Breeds at lowest risk of osteosarcoma (protected breeds) included the Bichon Frise, the French Bulldog and the Cavalier King Charles Spaniel, all with odd ratios of less than 0.30 compared with crossbreds. Body mass was strongly associated with osteosarcoma risk; dogs over 40 kg exhibited osteosarcoma odds of 45.44 (95% confidence interval 33.74-61.20) compared with dogs less than 10 kg. Chondrodystrophic breeds had an osteosarcoma odds ratio of 0.13 (95% confidence interval 0.11-0.16) compared with non-chondrodystrophic breeds. CONCLUSIONS: This study provides evidence of strong breed-associated osteosarcoma risk and protection, suggesting a genetic basis for osteosarcoma pathogenesis. It highlights that breeds selected for long legs/large body mass are generally overrepresented amongst at-risk breeds, whilst those selected for short leg length/small body mass are generally protected. These findings could inform genetic studies to identify osteosarcoma risk alleles in canines and humans; as well as increasing awareness amongst veterinarians and owners, resulting in improved breeding practices and clinical management of osteosarcoma in dogs.
RESUMEN
Histological assessment of prostate cancer is the key diagnostic test and can predict disease outcome. This is however an invasive procedure that carries associated risks, hence non-invasive assays to support the diagnostic pathway are much needed. A key feature of disease progression, and subsequent poor prognosis, is the presence of an altered stroma. Here we explored the utility of prostate stromal cell-derived vesicles as indicators of an altered tumour environment. We compared vesicles from six donor-matched pairs of adjacent-normal versus disease-associated primary stromal cultures. We identified 19 differentially expressed transcripts that discriminate disease from normal stromal extracellular vesicles (EVs). EVs isolated from patient serum were investigated for these putative disease-discriminating mRNA. A set of transcripts including Caveolin-1 (CAV1), TMP2, THBS1, and CTGF were found to be successful in discriminating clinically insignificant (Gleason = 6) disease from clinically significant (Gleason > 8) prostate cancer. Furthermore, correlation between transcript expression and progression-free survival suggests that levels of these mRNA may predict disease outcome. Informed by a machine learning approach, combining measures of the five most informative EV-associated mRNAs with PSA was shown to significantly improve assay sensitivity and specificity. An in-silico model was produced, showcasing the superiority of this multi-modal liquid biopsy compared to needle biopsy for predicting disease progression. This proof of concept highlights the utility of serum EV analytics as a companion diagnostic test with prognostic utility, which may obviate the need for biopsy.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias de la Próstata/genética , ARN Mensajero/genética , Humanos , MasculinoRESUMEN
Connexins (Cxs) and gap junction (GJ)-mediated communication have been linked with the regulation of cell cycle traverse. However, it is not clear whether Cx expression or GJ channel function are the key mediators in this process or at what stage this regulation may occur. We therefore tested the hypothesis that enhanced Cx expression could alter the rate of cell cycle traverse independently of GJ channel function. Sodium butyrate (NaBu) or anti-arrhythmic peptide (AAP10) were used to enhance Cx expression in HeLa cells stably expressing Cx43 (HeLa-43) and primary cultures of human fibroblasts (HFF) that predominantly express Cx43. To reduce GJ-mediated communication, 18-alpha-glycyrrhetinic acid (GA) was used. In HeLa-43 and HFF cells, NaBu and AAP10 enhanced Cx43 expression and increased channel function, while GA reduced GJ-mediated communication but did not significantly alter Cx43 expression levels. Timelapse microscopy and flow cytometry of HeLa-WT (wild-type, Cx deficient) and HeLa-43 cells dissected cell cycle traverse and enabled measurements of intra-mitotic time and determined levels of G1 arrest. Enhanced Cx43 expression increased mitotic durations corresponding with a G1 delay in cell cycle, which was linked to an increase in expression of the cell cycle inhibitor p21(waf1/cip1) in both HeLa-43 and HFF cells. Reductions in Cx43 channel function did not abrogate these responses, indicating that GJ channel function was not a critical factor in reducing cell proliferation in either cell type. We conclude that enhanced Cx43 expression and not GJ-mediated communication, is involved in regulating cell cycle traverse.
Asunto(s)
Ciclo Celular/fisiología , Conexina 43/metabolismo , Uniones Comunicantes/fisiología , Mitosis/fisiología , Western Blotting , Separación Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Inmunohistoquímica , Microscopía , TiempoRESUMEN
The monitoring of cells labeled with quantum dot endosome-targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time-series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long-term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members.
Asunto(s)
Citometría de Flujo/métodos , Puntos Cuánticos , Línea Celular Tumoral , Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , HumanosRESUMEN
Exosomes (Exo)-based therapy holds promise for treatment of lethal pancreatic cancer (PC). Limited understanding of key factors affecting Exo uptake in PC cells restricts better design of Exo-based therapy. This work aims to study the uptake properties of different Exo by PC cells. Exo from pancreatic carcinoma, melanoma and non-cancer cell lines were isolated and characterised for yield, size, morphology and exosomal marker expression. Isolated Exo were fluorescently labelled using a novel in-house developed method based on copper-free click chemistry to enable intracellular tracking and uptake quantification in cells. Important factors influencing Exo uptake were initially predicted by Design of Experiments (DoE) approach to facilitate subsequent actual experimental investigations. Uptake of all Exo types by PC cells (PANC-1) showed time- and dose-dependence as predicted by the DoE model. PANC-1 cell-derived exosomes (PANC-1 Exo) showed significantly higher uptake in PANC-1 cells than that of other Exo types at the longest incubation time and highest Exo dose. In vivo biodistribution studies in subcutaneous tumour-bearing mice similarly showed favoured accumulation of PANC-1 Exo in self-tissue (i.e. PANC-1 tumour mass) over the more vascularised melanoma (B16-F10) tumours, suggesting intrinsic tropism of PC-derived Exo for their parent cells. This study provides a simple, universal and reliable surface modification approach via click chemistry for in vitro and in vivo exosome uptake studies and can serve as a basis for a rationalised design approach for pre-clinical Exo cancer therapies.
RESUMEN
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 µM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 µM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Asunto(s)
Compuestos Epoxi/farmacología , Queratinocitos/efectos de los fármacos , Forboles/farmacología , Proteína Quinasa C , Repitelización/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Compuestos Epoxi/química , Humanos , Queratinocitos/enzimología , Forboles/química , Proteína Quinasa C/metabolismo , Repitelización/fisiología , Cicatrización de Heridas/fisiologíaRESUMEN
Correction for 'Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB' by Roman Mikhaylov et al., Lab Chip, 2020, 20, 1807-1814, DOI: 10.1039/C9LC01192G.
RESUMEN
Acoustofluidics has been increasingly applied in biology, medicine and chemistry due to its versatility in manipulating fluids, cells and nano-/micro-particles. In this paper, we develop a novel and simple technology to fabricate a surface acoustic wave (SAW)-based acoustofluidic device by clamping electrodes made using a printed circuit board (PCB) with a piezoelectric substrate. The PCB-based SAW (PCB-SAW) device is systematically characterised and benchmarked with a SAW device made using the conventional photolithography process with the same specifications. Microparticle manipulations such as streaming in droplets and patterning in microchannels were demonstrated in the PCB-SAW device. In addition, the PCB-SAW device was applied as an acoustic tweezer to pattern lung cancer cells to form three or four traces inside the microchannel in a controllable manner. Cell viability of â¼97% was achieved after acoustic manipulation using the PCB-SAW device, which proved its ability as a suitable tool for acoustophoretic applications.