Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pediatr Nephrol ; 38(12): 4137-4144, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37434027

RESUMEN

BACKGROUND: We conducted exploratory analyses to identify distinct trajectories of estimated glomerular filtration rate (eGFR) and their relationship with hyperfiltration, subsequent rapid eGFR decline, and albuminuria in participants with youth-onset type 2 diabetes enrolled in the Treatment Options for type 2 Diabetes in Adolescents and Youth (TODAY) study. METHODS: Annual serum creatinine, cystatin C, urine albumin, and creatinine measurements were obtained from 377 participants followed for ≥ 10 years. Albuminuria and eGFR were calculated. Hyperfiltration peak is the greatest eGFR inflection point during follow-up. Latent class modeling was applied to identify distinct eGFR trajectories. RESULTS: At baseline, participants' mean age was 14 years, type 2 diabetes duration was 6 months, mean HbA1c was 6%, and mean eGFR was 120 ml/min/1.73 m2. Five eGFR trajectories associated with different rates of albuminuria were identified, including a "progressive increasing eGFR" group (10%), three "stable eGFR" groups with varying starting mean eGFR, and an "eGFR steady decline" group (1%). Participants who exhibited the greatest peak eGFR also had the highest levels of elevated albuminuria at year 10. This group membership was characterized by a greater proportion of female and Hispanic participants. CONCLUSIONS: Distinct eGFR trajectories that associate with albuminuria risk were identified, with the eGFR trajectory characterized by increasing eGFR over time associating with the highest level of albuminuria. These descriptive data support the current recommendations to estimate GFR annually in young persons with type 2 diabetes and provide insight into eGFR-related factors which may contribute to predictive risk strategies for kidney disease therapies in youth with type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00081328, date registered 2002. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Femenino , Adolescente , Diabetes Mellitus Tipo 2/complicaciones , Estudios de Cohortes , Tasa de Filtración Glomerular , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/etiología , Albuminuria/etiología , Albuminuria/complicaciones , Estudios de Seguimiento , Factores de Riesgo , Progresión de la Enfermedad
2.
Diabetes Res Clin Pract ; 203: 110876, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595843

RESUMEN

AIMS: To examine the impact of pregnancy on microvascular and cardiovascular measures in women with youth-onset T2D. METHODS: Microvascular and cardiovascular measures were compared in in a cohort of 116 women who experienced a pregnancy of ≥ 20 weeks gestation and 291 women who did not among women in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. RESULTS: Cox regression models adjusted for participant characteristics at baseline including age, race/ethnicity, household income, diabetes duration, HbA1c (>6%), and BMI, demonstrated those who experienced pregnancy had 2.76 (1.38-5.49; p = 0.004) fold increased risk of hyperfiltration (eGFR ≥ 135 ml/min/1.73 m2), compared to those without a pregnancy. No differences were observed in rates of retinopathy (48.9% vs. 41.1%) or neuropathy (23.3% vs. 16.3%) in women who experienced pregnancy vs. women who did not, respectively. In fully adjusted models, pregnancy did not impact changes in echocardiographic or arterial stiffness compared to changes in women who were never pregnant. CONCLUSIONS: These results indicate that pregnancy increases the risk of hyperfiltration in women with youth-onset T2D, but not other micro or macrovascular complications. The rates of vascular complications are very high in youth-onset T2D potentially obscuring micro- and macrovascular changes attributable to pregnancy. CLINICAL TRIAL INFORMATION: ClinicalTrials.gov numbers,NCT01364350andNCT02310724.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Adolescente , Femenino , Humanos , Embarazo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Corazón , Factores de Riesgo
3.
Clin Epigenetics ; 12(1): 34, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075680

RESUMEN

BACKGROUND: Obesity and diabetes mellitus are directly implicated in many adverse health consequences in adults as well as in the offspring of obese and diabetic mothers. Hispanic Americans are particularly at risk for obesity, diabetes, and end-stage renal disease. Maternal obesity and/or diabetes through prenatal programming may alter the fetal epigenome increasing the risk of metabolic disease in their offspring. The aims of this study were to determine if maternal obesity or diabetes mellitus during pregnancy results in a change in infant methylation of CpG islands adjacent to targeted genes specific for obesity or diabetes disease pathways in a largely Hispanic population. METHODS: Methylation levels in the cord blood of 69 newborns were determined using the Illumina Infinium MethylationEPIC BeadChip. Over 850,000 different probe sites were analyzed to determine whether maternal obesity and/or diabetes mellitus directly attributed to differential methylation; epigenome-wide and regional analyses were performed for significant CpG sites. RESULTS: Following quality control, agranular leukocyte samples from 69 newborns (23 normal term (NT), 14 diabetes (DM), 23 obese (OB), 9 DM/OB) were analyzed for over 850,000 different probe sites. Contrasts between the NT, DM, OB, and DM/OB were considered. After correction for multiple testing, 15 CpGs showed differential methylation from the NT, associated with 10 differentially methylated genes between the diabetic and non-diabetic subgroups, CCDC110, KALRN, PAG1, GNRH1, SLC2A9, CSRP2BP, HIVEP1, RALGDS, DHX37, and SCNN1D. The effects of diabetes were partly mediated by the altered methylation of HOOK2, LCE3C, and TMEM63B. The effects of obesity were partly mediated by the differential methylation of LTF and DUSP22. CONCLUSIONS: The presented data highlights the associated altered methylation patterns potentially mediated by maternal diabetes and/or obesity. Larger studies are warranted to investigate the role of both the identified differentially methylated loci and the effects on newborn body composition and future health risk factors for metabolic disease. Additional future consideration should be targeted to the role of Hispanic inheritance. Potential future targeting of transgenerational propagation and developmental programming may reduce population obesity and diabetes risk.


Asunto(s)
Metilación de ADN , Diabetes Gestacional/genética , Epigenómica/métodos , Sangre Fetal/química , Hispánicos o Latinos/genética , Obesidad/genética , Adulto , Islas de CpG , Diabetes Gestacional/etnología , Epigénesis Genética , Femenino , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Edad Materna , Intercambio Materno-Fetal , Obesidad/etnología , Embarazo , Estudios Prospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA