Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(12): 7454-7467, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977636

RESUMEN

The Phospholipid Phosphatase Related 4 gene (PLPPR4,  *607813) encodes the Plasticity-Related-Gene-1 (PRG-1) protein. This cerebral synaptic transmembrane-protein modulates cortical excitatory transmission on glutamatergic neurons. In mice, homozygous Prg-1 deficiency causes juvenile epilepsy. Its epileptogenic potential in humans was unknown. Thus, we screened 18 patients with infantile epileptic spasms syndrome (IESS) and 98 patients with benign familial neonatal/infantile seizures (BFNS/BFIS) for the presence of PLPPR4 variants. A girl with IESS had inherited a PLPPR4-mutation (c.896C > G, NM_014839; p.T299S) from her father and an SCN1A-mutation from her mother (c.1622A > G, NM_006920; p.N541S). The PLPPR4-mutation was located in the third extracellular lysophosphatidic acid-interacting domain and in-utero electroporation (IUE) of the Prg-1p.T300S construct into neurons of Prg-1 knockout embryos demonstrated its inability to rescue the electrophysiological knockout phenotype. Electrophysiology on the recombinant SCN1Ap.N541S channel revealed partial loss-of-function. Another PLPPR4 variant (c.1034C > G, NM_014839; p.R345T) that was shown to result in a loss-of-function aggravated a BFNS/BFIS phenotype and also failed to suppress glutamatergic neurotransmission after IUE. The aggravating effect of Plppr4-haploinsufficiency on epileptogenesis was further verified using the kainate-model of epilepsy: double heterozygous Plppr4-/+|Scn1awt|p.R1648H mice exhibited higher seizure susceptibility than either wild-type, Plppr4-/+, or Scn1awt|p.R1648H littermates. Our study shows that a heterozygous PLPPR4 loss-of-function mutation may have a modifying effect on BFNS/BFIS and on SCN1A-related epilepsy in mice and humans.


Asunto(s)
Epilepsia , Convulsiones , Animales , Femenino , Humanos , Ratones , Epilepsia/metabolismo , Hipocampo/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Convulsiones/genética , Convulsiones/metabolismo
2.
Hum Mol Genet ; 29(15): 2579-2595, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32794569

RESUMEN

GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.


Asunto(s)
Epigenoma/genética , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Transcriptoma/genética , Diferenciación Celular/genética , Cromatina , Biología Computacional , Neuronas GABAérgicas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Interneuronas/citología , Factores de Transcripción/genética
3.
Neurobiol Dis ; 157: 105445, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34271084

RESUMEN

Extracellular vesicles (EVs) are small, cell-derived membranous particles containing various nucleic acids, proteins, and lipids that play essential roles in intercellular communication. Evidence indicating that part of the regenerative benefit from stem cell therapy arises through EVs released from transplanted cells created interest in using EVs for clinical applications. EVs from various cellular sources, including mesenchymal stem cells, neural stem cells, and glia, are efficacious in models of neurological disease. In these models, EVs attenuate reactive gliosis, neuronal death, pro-inflammatory signaling, as well as reduce cognitive, behavioral, and motor deficits. EVs are naturally permeable to the blood-brain barrier and can be modified to contain molecules of interest, thereby also serving as a vehicle to transport therapeutics into the brain. This review summarizes the current state of research using EVs as a treatment in models of neurological disorders and highlights considerations for future research.


Asunto(s)
Encéfalo/metabolismo , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo , Enfermedades del Sistema Nervioso/terapia , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Comunicación Celular , Muerte Celular , Vesículas Extracelulares/metabolismo , Gliosis , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Neuroinflamatorias , Fagocitosis , Trasplante de Células Madre , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/terapia
4.
Neurobiol Dis ; 147: 105147, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189882

RESUMEN

Oxytocin (OT) has broad effects in the brain and plays an important role in cognitive, social, and neuroendocrine function. OT has also been identified as potentially therapeutic in neuropsychiatric disorders such as autism and depression, which are often comorbid with epilepsy, raising the possibility that it might confer protection against the behavioral and seizure phenotypes in epilepsy. Dravet syndrome (DS) is an early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), treatment-resistant afebrile epilepsy, and cognitive and behavioral deficits. De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A are the main cause of DS, while genetic epilepsy with febrile seizures plus (GEFS+), also characterized by early-life FSs and afebrile epilepsy, is typically caused by inherited mutations that alter the biophysical properties of SCN1A. Despite the wide range of available antiepileptic drugs, many patients with SCN1A mutations do not achieve adequate seizure control or the amelioration of associated behavioral comorbidities. In the current study, we demonstrate that nanoparticle encapsulation of OT conferred robust and sustained protection against induced seizures and restored more normal social behavior in a mouse model of Scn1a-derived epilepsy. These results demonstrate the ability of a nanotechnology formulation to significantly enhance the efficacy of OT. This approach will provide a general strategy to enhance the therapeutic potential of additional neuropeptides in epilepsy and other neurological disorders.


Asunto(s)
Conducta Animal/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Oxitocina/administración & dosificación , Convulsiones , Animales , Epilepsias Mioclónicas/genética , Masculino , Ratones , Nanopartículas , Convulsiones/genética , Conducta Social
5.
Neurobiol Dis ; 125: 31-44, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659983

RESUMEN

SCN1A (NaV1.1 sodium channel) mutations cause Dravet syndrome (DS) and GEFS+ (which is in general milder), and are risk factors in other epilepsies. Phenotypic variability limits precision medicine in epilepsy, and it is important to identify factors that set phenotype severity and their mechanisms. It is not yet clear whether SCN1A mutations are necessary for the development of severe phenotypes or just for promoting seizures. A relevant example is the pleiotropic R1648H mutation that can cause either mild GEFS+ or severe DS. We used a R1648H knock-in mouse model (Scn1aRH/+) with mild/asymptomatic phenotype to dissociate the effects of seizures and of the mutation per se. The induction of short repeated seizures, at the age of disease onset for Scn1a mouse models (P21), had no effect in WT mice, but transformed the mild/asymptomatic phenotype of Scn1aRH/+ mice into a severe DS-like phenotype, including frequent spontaneous seizures and cognitive/behavioral deficits. In these mice, we found no major modifications in cytoarchitecture or neuronal death, but increased excitability of hippocampal granule cells, consistent with a pathological remodeling. Therefore, we demonstrate for our model that an SCN1A mutation is a prerequisite for a long term deleterious effect of seizures on the brain, indicating a clear interaction between seizures and the mutation for the development of a severe phenotype generated by pathological remodeling. Applied to humans, this result suggests that genetic alterations, even if mild per se, may increase the risk of second hits to develop severe phenotypes.


Asunto(s)
Epilepsia/genética , Epilepsia/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Convulsiones/patología , Animales , Técnicas de Sustitución del Gen , Hipocampo/patología , Ratones , Mutación , Fenotipo
6.
Hum Mol Genet ; 26(19): 3663-3681, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28666327

RESUMEN

A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo.


Asunto(s)
Encéfalo/fisiología , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/metabolismo , Secuencia Conservada , Exones , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Proteínas Nucleares/genética , Proteínas de Unión a Poli(A) , Isoformas de Proteínas , ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
7.
Epilepsia ; 60(12): 2359-2369, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31758544

RESUMEN

OBJECTIVE: The endocannabinoid system (ECS) is comprised of cannabinoid receptors 1 and 2 (CB1R and CB2R), endogenous ligands, and regulatory enzymes, and serves to regulate several important physiological functions throughout the brain and body. Recent evidence suggests that the ECS may be a promising target for the treatment of epilepsy, including epilepsy subtypes that arise from mutations in the voltage-gated sodium channel SCN1A. The objective of this study was to explore the effects of modulating CB2R activity on seizure susceptibility. METHODS: We examined susceptibility to induced seizures using a number of paradigms in CB2R knockout mice (Cnr2-/- ), and determined the effects of the CB2R agonist, JWH-133, and the CB2R antagonist, SR144528, on seizure susceptibility in wild-type mice. We also examined seizure susceptibility in Cnr2 mutants harboring the human SCN1A R1648H (RH) epilepsy mutation and performed Electroencephalography (EEG) analysis to determine whether the loss of CB2Rs would increase spontaneous seizure frequency in Scn1a RH mutant mice. RESULTS: Both heterozygous (Cnr2+/- ) and homozygous (Cnr2-/- ) knockout mice exhibited increased susceptibility to pentylenetetrazole (PTZ)-induced seizures. The CB2R agonist JWH-133 did not significantly alter seizure susceptibility in wild-type mice; however, administration of the CB2R antagonist SR144528 resulted in increased susceptibility to PTZ-induced seizures. In offspring from a cross between the Cnr2 × RH lines, both Cnr2 and RH mutants were susceptible to PTZ-induced seizures; however, seizure susceptibility was not significantly increased in mutants expressing both mutations. No spontaneous seizures were observed in either RH or Cnr2/RH mutants during 336-504 hours of continuous EEG recordings. SIGNIFICANCE: Our results demonstrate that reduced CB2R activity is associated with increased seizure susceptibility. CB2Rs might therefore provide a therapeutic target for the treatment of some forms of epilepsy.


Asunto(s)
Receptor Cannabinoide CB2/deficiencia , Receptor Cannabinoide CB2/genética , Convulsiones/metabolismo , Animales , Canfanos/farmacología , Cannabinoides/farmacología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pirazoles/farmacología , Convulsiones/inducido químicamente , Convulsiones/genética
8.
Brain ; 141(8): 2392-2405, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29961870

RESUMEN

GABAA receptors are ligand-gated anion channels that are important regulators of neuronal inhibition. Mutations in several genes encoding receptor subunits have been identified in patients with various types of epilepsy, ranging from mild febrile seizures to severe epileptic encephalopathy. Using whole-genome sequencing, we identified a novel de novo missense variant in GABRA5 (c.880G > C, p.V294L) in a patient with severe early-onset epilepsy and developmental delay. Targeted resequencing of 279 additional epilepsy patients identified 19 rare variants from nine GABAA receptor genes, including a novel de novo missense variant in GABRA2 (c.875C > A, p.T292K) and a recurrent missense variant in GABRB3 (c.902C > T, p.P301L). Patients with the GABRA2 and GABRB3 variants also presented with severe epilepsy and developmental delay. We evaluated the effects of the GABRA5, GABRA2 and GABRB3 missense variants on receptor function using whole-cell patch-clamp recordings from human embryonic kidney 293T cells expressing appropriate α, ß and γ subunits. The GABRA5 p.V294L variant produced receptors that were 10-times more sensitive to GABA but had reduced maximal GABA-evoked current due to increased receptor desensitization. The GABRA2 p.T292K variant reduced channel expression and produced mutant channels that were tonically open, even in the absence of GABA. Receptors containing the GABRB3 p.P301L variant were less sensitive to GABA and produced less GABA-evoked current. These results provide the first functional evidence that de novo variants in the GABRA5 and GABRA2 genes contribute to early-onset epilepsy and developmental delay, and demonstrate that epilepsy can result from reduced neuronal inhibition via a wide range of alterations in GABAA receptor function.


Asunto(s)
Epilepsias Mioclónicas/genética , Receptores de GABA-A/genética , Niño , Discapacidades del Desarrollo/genética , Epilepsias Mioclónicas/fisiopatología , Epilepsia/genética , Células HEK293 , Humanos , Mutación , Técnicas de Placa-Clamp , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
9.
Epilepsia ; 59(9): e135-e141, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30132828

RESUMEN

Previous reports have identified SLC6A1 variants in patients with generalized epilepsies, such as myoclonic-atonic epilepsy and childhood absence epilepsy. However, to date, none of the identified SLC6A1 variants has been functionally tested for an effect on GAT-1 transporter activity. The purpose of this study was to determine the incidence of SLC6A1 variants in 460 unselected epilepsy patients and to evaluate the impact of the identified variants on γ-aminobutyric acid (GABA)transport. Targeted resequencing was used to screen 460 unselected epilepsy patients for variants in SLC6A1. Five missense variants, one in-frame deletion, one nonsense variant, and one intronic splice-site variant were identified, representing a 1.7% diagnostic yield. Using a [3 H]-GABA transport assay, the seven identified exonic variants were found to reduce GABA transport activity. A minigene splicing assay revealed that the splice-site variant disrupted canonical splicing of exon 9 in the mRNA transcript, leading to premature protein truncation. These findings demonstrate that SLC6A1 is an important contributor to childhood epilepsy and that reduced GAT-1 function is a common consequence of epilepsy-causing SLC6A1 variants.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Regulación de la Expresión Génica/genética , Mutación/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Predisposición Genética a la Enfermedad/genética , Células HEK293 , Células HeLa , Humanos , Masculino , ARN Mensajero/metabolismo , Transfección , Tritio/farmacocinética , Ácido gamma-Aminobutírico/metabolismo
10.
Neurobiol Dis ; 102: 38-48, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28235671

RESUMEN

Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.3/deficiencia , Canal de Sodio Activado por Voltaje NAV1.3/genética , Convulsiones/genética , Convulsiones/metabolismo , Canales de Sodio/deficiencia , Canales de Sodio/genética , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Células HEK293 , Humanos , Lactante , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , ARN Mensajero/metabolismo
11.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688853

RESUMEN

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Asunto(s)
Predisposición Genética a la Enfermedad , Epilepsias Mioclónicas Progresivas/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Convulsiones/metabolismo , Adolescente , Animales , Encéfalo/fisiopatología , Niño , Femenino , Variación Genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Epilepsias Mioclónicas Progresivas/genética , Células 3T3 NIH , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsiones/genética , Adulto Joven
12.
J Neurosci ; 34(45): 14874-89, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25378155

RESUMEN

Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation.


Asunto(s)
Potenciales de Acción , Epilepsia/fisiopatología , Neuronas GABAérgicas/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Red Nerviosa/fisiopatología , Animales , Axones/metabolismo , Axones/fisiología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Calcio/metabolismo , Células Cultivadas , Epilepsia/genética , Epilepsia/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Potenciales Postsinápticos Inhibidores , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Red Nerviosa/citología , Red Nerviosa/metabolismo
14.
Neurobiol Dis ; 68: 16-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24704313

RESUMEN

SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.


Asunto(s)
Hipocampo/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Convulsiones/metabolismo , Convulsiones/patología , Factores de Edad , Animales , Animales Recién Nacidos , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/patología , Técnicas In Vitro , Ratones , Ratones Endogámicos C3H , Ratones Transgénicos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potasio/metabolismo , Desempeño Psicomotor , Tiempo de Reacción/genética , Tiempo de Reacción/fisiología , Convulsiones/etiología , Convulsiones/genética
15.
Front Pharmacol ; 15: 1397225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895634

RESUMEN

Patients with mutations that alter the function of the sodium channel SCN8A present with a range of clinical features, including mild to severe seizures, developmental delay, intellectual disability, autism, feeding dysfunction, motor impairment, and hypotonia. In an effort to identify compounds that could be potentially beneficial in SCN8A-associated epilepsy, Atkin et al. conducted an in vitro screen which resulted in the identification of 90 compounds that effectively reduced sodium influx into the cells expressing the human SCN8A R1872Q mutation. The top compounds that emerged from this screen included amitriptyline, carvedilol, and nilvadipine. In the current study, we evaluated the ability of these three compounds to increase resistance to 6 Hz or pentylenetetrazole (PTZ)-induced seizures in wild-type CF1 mice and in a mouse line expressing the human SCN8A R1620L mutation. We also evaluated the effects of fenfluramine administration, which was recently associated with a 60%-90% decrease in seizure frequency in three patients with SCN8A-associated epilepsy. While amitriptyline, carvedilol, and fenfluramine provided robust protection against induced seizures in CF1 mice, only carvedilol was able to significantly increase resistance to 6 Hz- and PTZ-induced seizures in RL/+ mutants. These results provide support for further evaluation of carvedilol as a potential treatment for patients with SCN8A mutations.

16.
Neurobiol Dis ; 49: 211-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22926190

RESUMEN

Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC α-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2α immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.


Asunto(s)
Interneuronas/fisiología , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Parvalbúminas/metabolismo , Convulsiones Febriles/fisiopatología , Convulsiones/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Susceptibilidad a Enfermedades/metabolismo , Fiebre , Flurotilo , Hipocampo/fisiopatología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neocórtex/fisiopatología , Inhibición Neural/fisiología , Células Piramidales/fisiopatología
17.
Epilepsia ; 54(4): 649-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23409935

RESUMEN

PURPOSE: Epilepsy is a complex disease characterized by a predisposition toward seizures. There are numerous barriers to the successful treatment of epilepsy. For instance, current antiepileptic drugs have adverse side effects and variable efficacies. Furthermore, the pathophysiologic basis of epilepsy remains largely elusive. Therefore, investigating novel genes and biologic processes underlying epilepsy may provide valuable insight and enable the development of new therapeutic agents. We previously identified methylglyoxal (MG) as an endogenous γ-aminobutyric acid (GABAA ) receptor agonist. Here, we investigated the role of MG and its catabolic enzyme, glyoxalase 1 (GLO1), in seizures. METHODS: We pretreated mice with MG before seizure induction with picrotoxin or pilocarpine and then assessed seizures behaviorally or by electroencephalography (EEG). We then investigated the role of GLO1 in seizures by treating mice with a pharmacologic inhibitor of GLO1 before seizure induction with pilocarpine and measured subsequent seizure phenotypes. Next, we explored the genetic relationship between Glo1 expression and seizures. We analyzed seizure phenotypes among C57BL/6J × DBA/2J (BXD) recombinant inbred (RI) mice with differential Glo1 expression. Lastly, we investigated a causal role for Glo1 in seizures by administering pilocarpine to transgenic (Tg) mice that overexpress Glo1. KEY FINDINGS: Pretreatment with MG attenuated pharmacologically-induced seizures at both the behavioral and EEG levels. GLO1 inhibition, which increases MG concentration in vivo, also attenuated seizures. Among BXD RI mice, high Glo1 expression was correlated with increased seizure susceptibility. Tg mice overexpressing Glo1 displayed reduced MG concentration in the brain and increased seizure severity. SIGNIFICANCE: These data identify MG as an endogenous regulator of seizures. Similarly, inhibition of GLO1 attenuates seizures, suggesting that this may be a novel therapeutic approach for epilepsy. Furthermore, this system may represent an endogenous negative feedback loop whereby high metabolic activity increases inhibitory tone via local accumulation of MG. Finally, Glo1 may contribute to the genetic architecture of epilepsy, as Glo1 expression regulates both MG concentration and seizure severity.


Asunto(s)
Lactoilglutatión Liasa/fisiología , Piruvaldehído/farmacología , Convulsiones/prevención & control , Animales , Anticonvulsivantes/farmacología , Conducta Animal/fisiología , Bases de Datos Genéticas , Electroencefalografía , Inhibidores Enzimáticos/farmacología , Retroalimentación Fisiológica , Antagonistas del GABA , Regulación Enzimológica de la Expresión Génica/fisiología , Glutatión/análogos & derivados , Glutatión/farmacología , Lactoilglutatión Liasa/antagonistas & inhibidores , Lactoilglutatión Liasa/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Muscarínicos , Picrotoxina , Pilocarpina , Receptores de GABA-A/fisiología , Convulsiones/inducido químicamente , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología
18.
Epilepsia ; 54(4): 625-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23311867

RESUMEN

PURPOSE: Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations. METHODS: Using immunohistochemistry we first examined the expression of mouse Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalography (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleep-wake pattern following 6 h of sleep deprivation. KEY FINDINGS: Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine, and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced non-rapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to wild-type littermates during the recovery period following 6 h of sleep deprivation. SIGNIFICANCE: These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. In addition, the expression of Scn1a in specific cell types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations.


Asunto(s)
Epilepsia/genética , Epilepsia/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones Febriles/genética , Convulsiones Febriles/fisiopatología , Sueño/genética , Sueño/fisiología , Análisis de Varianza , Animales , Ritmo Delta , Electroencefalografía , Electromiografía , Genotipo , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Mutación/fisiología , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Privación de Sueño/fisiopatología , Sueño REM/fisiología , Vigilia/fisiología
19.
Basic Clin Pharmacol Toxicol ; 133(4): 353-363, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37337931

RESUMEN

Brain-specific angiogenesis inhibitor 3 (ADGRB3/BAI3) belongs to the family of adhesion G protein-coupled receptors. It is most highly expressed in the brain where it plays a role in synaptogenesis and synapse maintenance. Genome-wide association studies have implicated ADGRB3 in disorders such as schizophrenia and epilepsy. Somatic mutations in ADGRB3 have also been identified in cancer. To better understand the in vivo physiological role of ADGRB3, we used CRISPR/Cas9 editing to generate a mouse line with a 7-base pair deletion in Adgrb3 exon 10. Western blot analysis confirmed that homozygous mutants (Adgrb3∆7/∆7 ) lack full-length ADGRB3 expression. The mutant mice were viable and reproduced in Mendelian ratios but demonstrated reduced brain and body weights and deficits in social interaction. Measurements of locomotor function, olfaction, anxiety levels and prepulse inhibition were comparable between heterozygous and homozygous mutants and wild-type littermates. Since ADGRB3 is also expressed in organs such as lung and pancreas, this new mouse model will facilitate elucidation of ADGRB3's role in non-central nervous system-related functions. Finally, since somatic mutations in ADGRB3 were identified in patients with several cancer types, these mice can be used to determine whether loss of ADGRB3 function contributes to tumour development.


Asunto(s)
Epilepsia , Neoplasias , Humanos , Ratones , Animales , Estudio de Asociación del Genoma Completo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias/metabolismo
20.
Front Pharmacol ; 13: 815950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153788

RESUMEN

Voltage-gated sodium channel genes are an important family of human epilepsy genes. De novo missense mutations in SCN8A (encoding Nav1.6) are associated with a spectrum of clinical presentation, including multiple seizure types, movement disorders, intellectual disability, and behavioral abnormalities such as autism. Patients with SCN8A mutations are often treated with multiple antiepileptic drugs, the most common being sodium channel blockers. Cannabidiol (CBD) has been included as a component of treatment regimens for some SCN8A patients; however, to date, there are no clinical trials that have evaluated the therapeutic potential of CBD in patients with SCN8A mutations. In the current manuscript, we demonstrated a dose-dependent increase in seizure resistance following CBD treatment in mice expressing the human SCN8A mutation R1620L (RL/+). We also found that CBD treatment improved social behavior and reduced hyperactivity in the RL/+ mutants. Our findings suggest that CBD may be beneficial in patients with SCN8A-associated disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA