Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mutagenesis ; 38(4): 192-200, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37300447

RESUMEN

The use of error-corrected Next Generation Sequencing (ecNG) to determine mutagenicity has been a subject of growing interest and potentially a disruptive technology that could supplement, and in time, replace current testing paradigms in preclinical safety assessment. Considering this, a Next Generation Sequencing Workshop was held at the Royal Society of Medicine in London in May 2022, supported by the United Kingdom Environmental Mutagen Society (UKEMS) and TwinStrand Biosciences (WA, USA), to discuss progress and future applications of this technology. In this meeting report, the invited speakers provide an overview of the Workshop topics covered and identify future directions for research. In the area of somatic mutagenesis, several speakers reviewed recent progress made with correlating ecNGS to classic in vivo transgenic rodent mutation assays as well as exploring the use of this technology directly in humans and animals, and in complex organoid models. Additionally, ecNGS has been used for detecting off-target effects of gene editing tools and emerging data suggest ecNGS potential to measure clonal expansion of cells carrying mutations in cancer driver genes as an early marker of carcinogenic potential and for direct human biomonitoring. As such, the workshop demonstrated the importance of raising awareness and support for advancing the science of ecNGS for mutagenesis, gene editing, and carcinogenesis research. Furthermore, the potential of this new technology to contribute to advances in drug and product development and improve safety assessment was extensively explored.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutágenos , Animales , Humanos , Londres , Mutagénesis , Mutación , Carcinogénesis , Genómica
2.
Regul Toxicol Pharmacol ; 135: 105247, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998738

RESUMEN

Under ICH M7, impurities are assessed using the bacterial reverse mutation assay (i.e., Ames test) when predicted positive using in silico methodologies followed by expert review. N-Nitrosamines (NAs) have been of recent concern as impurities in pharmaceuticals, mainly because of their potential to be highly potent mutagenic carcinogens in rodent bioassays. The purpose of this analysis was to determine the sensitivity of the Ames assay to predict the carcinogenic outcome with curated proprietary Vitic (n = 131) and Leadscope (n = 70) databases. NAs were selected if they had corresponding rodent carcinogenicity assays. Overall, the sensitivity/specificity of the Ames assay was 93-97% and 55-86%, respectively. The sensitivity of the Ames assay was not significantly impacted by plate incorporation (84-89%) versus preincubation (82-89%). Sensitivity was not significantly different between use of rat and hamster liver induced S9 (80-93% versus 77-96%). The sensitivity of the Ames is high when using DMSO as a solvent (87-88%). Based on the analysis of these databases, the Ames assay conducted under OECD 471 guidelines is highly sensitive for detecting the carcinogenic hazards of NAs.


Asunto(s)
Dimetilsulfóxido , Nitrosaminas , Animales , Bacterias , Bioensayo , Carcinógenos/toxicidad , Cricetinae , Mutación , Nitrosaminas/metabolismo , Nitrosaminas/toxicidad , Preparaciones Farmacéuticas , Ratas , Roedores/metabolismo , Solventes
3.
Regul Toxicol Pharmacol ; 117: 104746, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32911461

RESUMEN

Pharmaceutic products designed to perturb the function of epigenetic modulators have been approved by regulatory authorities for treatment of advanced cancer. While the predominant effort in epigenetic drug development continues to be in oncology, non-oncology indications are also garnering interest. A survey of pharmaceutical companies was conducted to assess the interest and concerns for developing small molecule direct epigenetic effectors (EEs) as medicines. Survey themes addressed (1) general levels of interest and activity with EEs as therapeutic agents, (2) potential safety concerns, and (3) possible future efforts to develop targeted strategies for nonclinical safety assessment of EEs. Thirteen companies contributed data to the survey. Overall, the survey data indicate the consensus opinion that existing ICH guidelines are effective and appropriate for nonclinical safety assessment activities with EEs. Attention in the framework of study design should, on a case by case basis, be considered for delayed or latent toxicities, carcinogenicity, reproductive toxicity, and the theoretical potential for transgenerational effects. While current guidelines have been appropriate for the nonclinical safety assessments of epigenetic targets, broader experience with a wide range of epigenetic targets will provide information to assess the potential need for new or revised risk assessment strategies for EE drugs.


Asunto(s)
Industria Farmacéutica/normas , Control de Medicamentos y Narcóticos , Epigénesis Genética/efectos de los fármacos , Preparaciones Farmacéuticas/normas , Encuestas y Cuestionarios , Animales , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Industria Farmacéutica/tendencias , Control de Medicamentos y Narcóticos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Epigénesis Genética/genética , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Medición de Riesgo/normas , Medición de Riesgo/tendencias
4.
Int J Toxicol ; 36(6): 440-448, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29130831

RESUMEN

In a previously reported CD-1 mouse 2-year carcinogenicity study with the sodium glucose cotransporter-2 inhibitor empagliflozin, an increased incidence of renal tubular adenomas and carcinomas was identified only in the male high-dose group. Follow-up investigative studies have shown that the renal tumors in male high-dose mice were preceded by a number of renal degenerative/regenerative findings. Prior cross-species in vitro metabolism studies using microsomes identified an oxidative metabolite (M466/2) predominantly formed in the male mouse kidney and which spontaneously degrades to a metabolite (M380/1) and reactive 4-OH crotonaldehyde (CTA). In order to further evaluate potential modes of action for empagliflozin-associated male mouse renal tumors, we report here a series of in vitro investigative toxicology studies conducted to evaluate the cytotoxic and genotoxic potential of empagliflozin and M466/2. To assess the cytotoxic potential of empagliflozin and M466/2, a primary mouse renal tubular epithelial (mRTE) cell model was used. In mRTE cells, M466/2-derived in vitro 4-OH CTA exposure was cytotoxic, while empagliflozin was not cytotoxic or mitogenic. Empagliflozin and M466/2 were not genotoxic, supporting an indirect mode of action for empagliflozin-associated male mouse renal tumorigenesis. In conclusion, these in vitro data show that M466/2-derived 4-OH CTA exposure is associated with cytotoxicity in renal tubule cells and may be involved in promoting compound-related in vivo renal metabolic stress and chronic low-level renal injury, in turn supporting a nongenotoxic mode of tumor pathogenesis specific to the male mouse.


Asunto(s)
Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/toxicidad , Glucósidos/metabolismo , Glucósidos/toxicidad , Hipoglucemiantes/metabolismo , Hipoglucemiantes/toxicidad , Túbulos Renales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Compuestos de Bencidrilo/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glucósidos/química , Hipoglucemiantes/química , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Ratones Endogámicos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Relación Estructura-Actividad
5.
Artículo en Inglés | MEDLINE | ID: mdl-37770142

RESUMEN

N-Nitrosodiethylamine (NDEA), a well-studied N-nitrosamine, was tested in rats to compare the dose-response relationship of three genotoxicity endpoints. Mutant / mutation frequencies were determined using the transgenic rodent (TGR) gene mutation assay and error corrected next generation sequencing (ecNGS) (i.e., duplex sequencing (DS)), and genetic damage was detected by the alkaline comet assay. Big Blue® (cII Locus) animals (n = 6 per dose group) were administered doses of 0.001, 0.01, 0.1, 1, 3 mg/kg/day NDEA by oral gavage. Samples were collected for cII mutation and DS analyses following 28-days of exposure and 3 days recovery. In a separate study, male Sprague-Dawley (SD) rats (n = 6 per dose group) were administered the same doses by oral gavage for two consecutive days and then samples collected for the alkaline comet assay. A dose-related increase in mutant / mutation frequencies of the liver but not duodenum was observed using the TGR assay and DS with DS resulting in a slightly more sensitive response, with a lower benchmark dose (BMD). In addition, a dose-related increase in percent tail DNA was observed in the liver using the alkaline comet assay. Therefore, DS and comet assays showed good utility for hazard identification and dose-response analysis of a representative N-nitrosamine comparable to the TGR gene mutation assay.


Asunto(s)
Dietilnitrosamina , Nitrosaminas , Ratas , Animales , Masculino , Ensayo Cometa/métodos , Dietilnitrosamina/toxicidad , Roedores , Ratas Sprague-Dawley , Mutación , Animales Modificados Genéticamente , Daño del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Mutagenicidad/métodos , Relación Dosis-Respuesta a Droga
6.
Mutat Res Rev Mutat Res ; 792: 108466, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37643677

RESUMEN

Error-corrected Next Generation Sequencing (ecNGS) is rapidly emerging as a valuable, highly sensitive and accurate method for detecting and characterizing mutations in any cell type, tissue or organism from which DNA can be isolated. Recent mutagenicity and carcinogenicity studies have used ecNGS to quantify drug-/chemical-induced mutations and mutational spectra associated with cancer risk. ecNGS has potential applications in genotoxicity assessment as a new readout for traditional models, for mutagenesis studies in 3D organotypic cultures, and for detecting off-target effects of gene editing tools. Additionally, early data suggest that ecNGS can measure clonal expansion of mutations as a mechanism-agnostic early marker of carcinogenic potential and can evaluate mutational load directly in human biomonitoring studies. In this review, we discuss promising applications, challenges, limitations, and key data initiatives needed to enable regulatory testing and adoption of ecNGS - including for advancing safety assessment, augmenting weight-of-evidence for mutagenicity and carcinogenicity mechanisms, identifying early biomarkers of cancer risk, and managing human health risk from chemical exposures.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutágenos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Pruebas de Mutagenicidad , Mutación , Mutágenos/toxicidad , Carcinógenos/toxicidad , Carcinogénesis , Medición de Riesgo
7.
Toxicol Sci ; 188(1): 4-16, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35404422

RESUMEN

There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.


Asunto(s)
Neoplasias , Roedores , Animales , Biomarcadores de Tumor/genética , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Genómica , Neoplasias/inducido químicamente , Neoplasias/genética
8.
Environ Mol Mutagen ; 61(1): 114-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603995

RESUMEN

In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Rutas de Resultados Adversos , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Aneuploidia , Animales , Aurora Quinasa A/antagonistas & inhibidores , Rotura Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad/métodos , Mutación/efectos de los fármacos
9.
Artículo en Inglés | MEDLINE | ID: mdl-32087853

RESUMEN

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to obtain consensus on unresolved issues associated with genotoxicity testing. At the 2017 IWGT meeting in Tokyo, four sub-groups addressed issues associated with the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471, which describes the use of bacterial reverse-mutation tests. The strains sub-group analyzed test data from >10,000 chemicals, tested additional chemicals, and concluded that some strains listed in TG471 are unnecessary because they detected fewer mutagens than other strains that the guideline describes as equivalent. Thus, they concluded that a smaller panel of strains would suffice to detect most mutagens. The laboratory proficiency sub-group recommended (a) establishing strain cell banks, (b) developing bacterial growth protocols that optimize assay sensitivity, and (c) testing "proficiency compounds" to gain assay experience and establish historical positive and control databases. The sub-group on criteria for assay evaluation recommended that laboratories (a) track positive and negative control data; (b) develop acceptability criteria for positive and negative controls; (c) optimize dose-spacing and the number of analyzable doses when there is evidence of toxicity; (d) use a combination of three criteria to evaluate results: a dose-related increase in revertants, a clear increase in revertants in at least one dose relative to the concurrent negative control, and at least one dose that produced an increase in revertants above control limits established by the laboratory from historical negative controls; and (e) establish experimental designs to resolve unclear results. The in silico sub-group summarized in silico utility as a tool in genotoxicity assessment but made no specific recommendations for TG471. Thus, the workgroup identified issues that could be addressed if TG471 is revised. The companion papers (a) provide evidence-based approaches, (b) recommend priorities, and (c) give examples of clearly defined terms to support revision of TG471.


Asunto(s)
Escherichia coli/efectos de los fármacos , Mutagénesis , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Animales , Bancos de Muestras Biológicas/organización & administración , Bases de Datos de Compuestos Químicos/provisión & distribución , Escherichia coli/genética , Guías como Asunto , Humanos , Cooperación Internacional , Mutágenos/clasificación , Salmonella typhimurium/genética , Tokio
10.
Artículo en Inglés | MEDLINE | ID: mdl-31708073

RESUMEN

A committee was constituted within the International Workshop on Genetic Toxicology Testing (IWGT) to evaluate the current criteria for a valid Ames test and to provide recommendations for interpretation of test results. Currently, determination of a positive vs. a negative result is made by applying various data evaluation procedures for comparing dosed plates with the concurrent solvent control plates. These evaluation procedures include a requirement for a specific fold increase (2- or 3-fold, specific to the bacterial strain), formal statistical procedures, or subjective (expert judgment) evaluation. After extensive discussion, the workgroup was not able to reach consensus recommendations in favor of any of these procedures. There was a consensus that combining additional evaluation criteria to the comparison between dosed plates and the concurrent solvent control plates improves test interpretation. The workgroup recommended using these additional criteria because the induction of mutations is a continuum of responses and there is no biological relevance to a strict dividing line between a positive (mutagenic) and not-positive (nonmutagenic) response. The most useful additional criteria identified were a concentration-response relationship and consideration of a possible increase above the concurrent control in the context of the laboratory's historical solvent control values for the particular tester strain. The workgroup also emphasized the need for additional testing to resolve weak or inconclusive responses, usually with altered experimental conditions chosen based on the initial results. Use of these multiple criteria allowed the workgroup to reach consensus on definitions of "clear positive" and "clear negative" responses which would not require a repeat test for clarification. The workgroup also reached consensus on recommendations to compare the responses of concurrent positive and negative controls to historical control distributions for assay acceptability, and the use of control charts to determine the validity of the individual test.


Asunto(s)
Pruebas de Mutagenicidad , Salmonella typhimurium/genética , Animales , Estudios de Evaluación como Asunto , Humanos
11.
Artículo en Inglés | MEDLINE | ID: mdl-31708075

RESUMEN

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to seek consensus on difficult or conflicting approaches to genotoxicity testing based upon experience, available data, and analysis techniques. At the 2017 IWGT meeting in Tokyo, one working group addressed the sensitivity and selectivity of the bacterial strains specified in the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471 to recommend possible modification of the test guideline. Three questions were posed: (1) Although TA100 is derived from TA1535, does TA1535 detect any mutagens that are not detected by TA100? (2) Among the options of Salmonella TA1537, TA97 or TA97a, are these strains truly equivalent? (3) Because there is a choice to use one of either E. coli WP2 uvrA, E. coli WP2 uvrA pKM101, or Salmonella TA102, are these strains truly equivalent? To answer these questions, we analyzed published bacterial mutation data in multiple strains from large (>10,000 compound) databases from Leadscope and Lhasa Limited and anonymized data for 53 compounds tested in TA1535 and TA100 provided by a pharmaceutical company. Our analysis involved (1) defining criteria for determining selective responses when using different strains; (2) identifying compounds producing selective responses based upon author calls; (3) confirming selective responses by visually examining dose-response data and considering experimental conditions; (4) using statistical methods to quantify the responses; (5) performing limited additional direct-comparison testing; and (6) determining the chemical classes producing selective responses. We found that few mutagens would fail to be detected if the test battery did not include Salmonella strains TA1535 (8/1167), TA1537 (2/247), TA102 (4/46), and E. coli WP2 uvrA (2/21). Of the mutagens detected by the full TG471 strain battery, 93% were detected using only strains TA98 and TA100; consideration of results from in vitro genotoxicity assays that detect clastogenicity increased this to 99%.


Asunto(s)
Guías como Asunto , Pruebas de Mutagenicidad/normas , Escherichia coli/genética , Salmonella/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-31708077

RESUMEN

The bacterial reverse mutation test is a mainstay for evaluation of mutagenicity predicting the carcinogenic potential of a test substance and is recommended by regulatory agencies across the globe. The popularity of the test is due, in part, to the relatively low cost, rapid results and small amount of test material required compared to most other toxicological tests as well as the near universal acceptance of the toxicological significance of a clear positive or negative result. Most laboratories follow the Organization for Economic Cooperation and Development Test Guideline 471 (TG471) or national guidelines based on TG471. Regulatory agencies in most countries are obligated to consider results from tests which meet the recommendations laid out in TG471. Nonetheless, laboratories unfamiliar with the test sometimes have trouble generating reliable, reproducible results. TG471 is a test guideline, not a detailed test protocol. A group of experts from regulatory agencies and laboratories which use the assay has assembled here a set of recommendations which if followed, will allow an inexperienced laboratory to acquire proficiency in assay conduct. These include recommendations for how to create a cell bank for the 5 Salmonella typhimurium/Escherichia coli strains and develop a laboratory protocol to reliably culture each strain to ensure each culture has the characteristics which allow adequate sensitivity for detection of mutagens using the test as described in TG471. By testing compounds on the provided lists of positive and negative test substances, the laboratory will have surmounted many of the problems commonly encountered during routine testing of unknown chemicals and will have gained the experience necessary to prepare the detailed protocol needed for performing the test under Good Laboratory Procedures and the laboratory will have generated the historical positive and negative control databases which are needed for test reports which adhere to TG471.


Asunto(s)
Eficiencia Organizacional , Escherichia coli/genética , Laboratorios/organización & administración , Pruebas de Mutagenicidad , Salmonella typhimurium/genética
13.
Environ Mol Mutagen ; 60(6): 513-533, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30702769

RESUMEN

The in vitro MultiFlow® DNA Damage Assay multiplexes γH2AX, p53, phospho-histone H3, and polyploidization biomarkers into a single flow cytometric analysis. The current report describes a tiered sequential data analysis strategy based on data generated from exposure of human TK6 cells to a previously described 85 chemical training set and a new pharmaceutical-centric test set (n = 40). In each case, exposure was continuous over a range of closely spaced concentrations, and cell aliquots were removed for analysis following 4 and 24 hr of treatment. The first data analysis step focused on chemicals' genotoxic potential, and for this purpose, we evaluated the performance of a machine learning (ML) ensemble, a rubric that considered fold increases in biomarkers against global evaluation factors (GEFs), and a hybrid strategy that considered ML and GEFs. This first tier further used ML output and/or GEFs to classify genotoxic activity as clastogenic and/or aneugenic. Test set results demonstrated the generalizability of the first tier, with particularly good performance from the ML ensemble: 35/40 (88%) concordance with a priori genotoxicity expectations and 21/24 (88%) agreement with expected mode of action (MoA). A second tier applied unsupervised hierarchical clustering to the biomarker response data, and these analyses were found to group certain chemicals, especially aneugens, according to their molecular targets. Finally, a third tier utilized benchmark dose analyses and MultiFlow biomarker responses to rank genotoxic potency. The relevance of these rankings is supported by the strong agreement found between benchmark dose values derived from MultiFlow biomarkers compared to those generated from parallel in vitro micronucleus analyses. Collectively, the results suggest that a tiered MultiFlow data analysis pipeline is capable of rapidly and effectively identifying genotoxic hazards while providing additional information that is useful for modern risk assessments-MoA, molecular targets, and potency. Environ. Mol. Mutagen. 60:513-533, 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Mutágenos/toxicidad , Aneugénicos/toxicidad , Bioensayo/métodos , Biomarcadores/metabolismo , Línea Celular , Daño del ADN/efectos de los fármacos , Análisis de Datos , Citometría de Flujo/métodos , Histonas/metabolismo , Humanos , Aprendizaje Automático , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos , Fosforilación/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
14.
Environ Mol Mutagen ; 60(9): 766-777, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31335992

RESUMEN

Arylboronic acids and esters (referred to collectively as arylboronic compounds) are commonly used intermediates in the synthesis of pharmaceuticals but pose a challenge for chemical syntheses because they are often positive for bacterial mutagenicity in vitro. As such, arylboronic compounds are then typically controlled to levels that are acceptable for mutagenic impurities, that is, the threshold of toxicological concern (TTC). This study used ICH M7 guidance to design and conduct a testing strategy to investigate the in vivo relevance of the in vitro positive findings of arylboronic compounds. Eight arylboronic compounds representing a variety of chemical scaffolds were tested in Sprague Dawley and/or Wistar rats in the in vivo Pig-a (peripheral blood reticulocytes and mature red blood cells) and/or comet assays (duodenum and/or liver). Five of the eight compounds were also tested in the micronucleus (peripheral blood) assay. The arylboronic compounds tested orally demonstrated high systemic exposure; thus the blood and bone marrow were adequately exposed to test article. One compound was administered intravenously due to formulation stability issues. This investigation showed that arylboronic compounds that were mutagenic in vitro were not found to be mutagenic in the corresponding in vivo assays. Therefore, arylboronic compounds similar to the scaffolds tested in this article may be considered non-mutagenic and managed in accordance with the ICH Q3A/Q3B guidelines. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Ácidos Borónicos/toxicidad , Ésteres/toxicidad , Mutágenos/toxicidad , Animales , Médula Ósea/efectos de los fármacos , Ensayo Cometa/métodos , Duodeno/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Hígado/diagnóstico por imagen , Masculino , Pruebas de Micronúcleos/métodos , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Reticulocitos/efectos de los fármacos
15.
Artículo en Inglés | MEDLINE | ID: mdl-30744809

RESUMEN

A database of 91 chemicals with published data from both transgenic rodent mutation (TGR) and rodent comet assays has been compiled. The objective was to compare the sensitivity of the two assays for detecting genotoxicity. Critical aspects of study design and results were tabulated for each dataset. There were fewer datasets from rats than mice, particularly for the TGR assay, and therefore, results from both species were combined for further analysis. TGR and comet responses were compared in liver and bone marrow (the most commonly studied tissues), and in stomach and colon evaluated either separately or in combination with other GI tract segments. Overall positive, negative, or equivocal test results were assessed for each chemical across the tissues examined in the TGR and comet assays using two approaches: 1) overall calls based on weight of evidence (WoE) and expert judgement, and 2) curation of the data based on a priori acceptability criteria prior to deriving final tissue specific calls. Since the database contains a high prevalence of positive results, overall agreement between the assays was determined using statistics adjusted for prevalence (using AC1 and PABAK). These coefficients showed fair or moderate to good agreement for liver and the GI tract (predominantly stomach and colon data) using WoE, reduced agreement for stomach and colon evaluated separately using data curation, and poor or no agreement for bone marrow using both the WoE and data curation approaches. Confidence in these results is higher for liver than for the other tissues, for which there were less data. Our analysis finds that comet and TGR generally identify the same compounds (mainly potent mutagens) as genotoxic in liver, stomach and colon, but not in bone marrow. However, the current database content precluded drawing assay concordance conclusions for weak mutagens and non-DNA reactive chemicals.


Asunto(s)
Médula Ósea/efectos de los fármacos , Colon/efectos de los fármacos , Ensayo Cometa/métodos , Hígado/efectos de los fármacos , Mutágenos/toxicidad , Mutación , Estómago/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Daño del ADN , Femenino , Masculino , Ratones , Pruebas de Micronúcleos , Ratas
17.
Environ Mol Mutagen ; 48(3-4): 330-43, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17358027

RESUMEN

The genotoxicity of zidovudine (AZT) based treatments was investigated in human H9 lymphoblastoid cells in an in vitro study and in red blood cells (RBCs) from perinatally exposed HIV-1-infected mothers and their infants in an observational cohort study. Exposure of H9 cells for 24 hr to AZT produced dose-dependent increases in Comet assay tail moment (TM) when electrophoresed at pH 13.0, but not at pH 12.1 or pH 8.0, suggesting that DNA damage was via alkali-labile lesions and not double-stranded DNA strand breaks. The TM dose response at pH 13.0 correlated directly with AZT-DNA incorporation determined by AZT-radioimmunoassay. Levels of DNA damage in utero, measured by Comet assay TM, were similar in cord blood mononuclear cells of nucleoside analog-exposed newborns (n = 43) and unexposed controls (n = 40). In contrast, the glycophorin A (GPA) somatic cell mutation assay (which screens for large-scale DNA damage in RBCs) showed clear evidence that GPA N/N variants, arising from chromosome loss and duplication, somatic recombination, and gene conversion, were significantly elevated in mother-child pairs receiving prepartum AZT plus lamivudine (3TC). Cord blood from newborns exposed to AZT-3TC had GPA N/N variant frequencies of 4.7 +/- 0.7 (mean +/- SE) x 10(-6) RBCs (n = 26 infants) compared with 2.2 +/- 0.3 x 10(-6) RBCs for unexposed controls (n = 30 infants; P < 0.001). Elevations in GPA N/N variants generally persisted through 1 year of age in nucleoside analog-exposed children. Overall, the mutagenic effects found in mother-child pairs receiving AZT-based treatments justify their surveillance for long-term genotoxic consequences.


Asunto(s)
Fármacos Anti-VIH/toxicidad , Lamivudine/toxicidad , Inhibidores de la Transcriptasa Inversa/toxicidad , Zidovudina/toxicidad , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Línea Celular , Ensayo Cometa , Combinación de Medicamentos , Eritrocitos/efectos de los fármacos , Femenino , Glicoforinas/genética , Humanos , Lactante , Recién Nacido , Lamivudine/administración & dosificación , Lamivudine/uso terapéutico , Leucocitos/efectos de los fármacos , Intercambio Materno-Fetal , Pruebas de Mutagenicidad , Mutación , Embarazo , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Zidovudina/administración & dosificación , Zidovudina/uso terapéutico
19.
Artículo en Inglés | MEDLINE | ID: mdl-26212293

RESUMEN

The in vivo rodent alkaline comet assay (comet assay) is used internationally to investigate the in vivo genotoxic potential of test chemicals. This assay, however, has not previously been formally validated. The Japanese Center for the Validation of Alternative Methods (JaCVAM), with the cooperation of the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)/the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), the European Centre for the Validation of Alternative Methods (ECVAM), and the Japanese Environmental Mutagen Society/Mammalian Mutagenesis Study Group (JEMS/MMS), organized an international validation study to evaluate the reliability and relevance of the assay for identifying genotoxic carcinogens, using liver and stomach as target organs. The ultimate goal of this validation effort was to establish an Organisation for Economic Co-operation and Development (OECD) test guideline. The purpose of the pre-validation studies (i.e., Phase 1 through 3), conducted in four or five laboratories with extensive comet assay experience, was to optimize the protocol to be used during the definitive validation study.


Asunto(s)
Carcinógenos/análisis , Ensayo Cometa/métodos , Ensayo Cometa/normas , Daño del ADN , Animales , Europa (Continente) , Guías como Asunto , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sociedades Científicas , Estómago/efectos de los fármacos , Estados Unidos
20.
Artículo en Inglés | MEDLINE | ID: mdl-25953395

RESUMEN

As a part of the 6th IWGT, an expert working group on the comet assay evaluated critical topics related to the use of the in vivo comet assay in regulatory genotoxicity testing. The areas covered were: identification of the domain of applicability and regulatory acceptance, identification of critical parameters of the protocol and attempts to standardize the assay, experience with combination and integration with other in vivo studies, demonstration of laboratory proficiency, sensitivity and power of the protocol used, use of different tissues, freezing of samples, and choice of appropriate measures of cytotoxicity. The standard protocol detects various types of DNA lesions but it does not detect all types of DNA damage. Modifications of the standard protocol may be used to detect additional types of specific DNA damage (e.g., cross-links, bulky adducts, oxidized bases). In addition, the working group identified critical parameters that should be carefully controlled and described in detail in every published study protocol. In vivo comet assay results are more reliable if they were obtained in laboratories that have demonstrated proficiency. This includes demonstration of adequate response to vehicle controls and an adequate response to a positive control for each tissue being examined. There was a general agreement that freezing of samples is an option but more data are needed in order to establish generally accepted protocols. With regard to tissue toxicity, the working group concluded that cytotoxicity could be a confounder of comet results. It is recommended to look at multiple parameters such as histopathological observations, organ-specific clinical chemistry as well as indicators of tissue inflammation to decide whether compound-specific toxicity might influence the result. The expert working group concluded that the alkaline in vivo comet assay is a mature test for the evaluation of genotoxicity and can be recommended to regulatory agencies for use.


Asunto(s)
Ensayo Cometa/métodos , Ensayo Cometa/normas , Daño del ADN , ADN , Animales , ADN/análisis , ADN/química , ADN/aislamiento & purificación , Educación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA