Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583863

RESUMEN

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/química , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Perros , Células HEK293 , Modelos Moleculares , Estructura Terciaria de Proteína
2.
J Biol Chem ; 299(5): 104681, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030504

RESUMEN

We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Miocardio/enzimología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Aprendizaje Automático
3.
Biochemistry ; 62(8): 1331-1336, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37014032

RESUMEN

Myoregulin (MLN) is a member of the regulin family, a group of homologous membrane proteins that bind to and regulate the activity of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). MLN, which is expressed in skeletal muscle, contains an acidic residue in its transmembrane domain. The location of this residue, Asp35, is unusual because the relative occurrence of aspartate is very rare (<0.2%) within the transmembrane helix regions. Therefore, we used atomistic simulations and ATPase activity assays of protein co-reconstitutions to probe the functional role of MLN residue Asp35. These structural and functional studies showed Asp35 has no effects on SERCA's affinity for Ca2+ or the structural integrity of MLN in the lipid bilayer. Instead, Asp35 controls SERCA inhibition by populating a bound-like orientation of MLN. We propose Asp35 provides a functional advantage over other members of the regulin family by populating preexisting MLN conformations required for MLN-specific regulation of SERCA. Overall, this study provides new clues about the evolution and functional divergence of the regulin family and offers novel insights into the functional role of acidic residues in transmembrane protein domains.


Asunto(s)
Calcio , Músculo Esquelético , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Transporte Iónico , Conformación Molecular , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Humanos
4.
J Biol Chem ; 298(5): 101865, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339486

RESUMEN

The sodium-potassium ATPase (Na/K-ATPase, NKA) establishes ion gradients that facilitate many physiological functions including action potentials and secondary transport processes. NKA comprises a catalytic subunit (alpha) that interacts closely with an essential subunit (beta) and regulatory transmembrane micropeptides called FXYD proteins. In the heart, a key modulatory partner is the FXYD protein phospholemman (PLM, FXYD1), but the stoichiometry of the alpha-beta-PLM regulatory complex is unknown. Here, we used fluorescence lifetime imaging and spectroscopy to investigate the structure, stoichiometry, and affinity of the NKA-regulatory complex. We observed a concentration-dependent binding of the subunits of NKA-PLM regulatory complex, with avid association of the alpha subunit with the essential beta subunit as well as lower affinity alpha-alpha and alpha-PLM interactions. These data provide the first evidence that, in intact live cells, the regulatory complex is composed of two alpha subunits associated with two beta subunits, decorated with two PLM regulatory subunits. Docking and molecular dynamics (MD) simulations generated a structural model of the complex that is consistent with our experimental observations. We propose that alpha-alpha subunit interactions support conformational coupling of the catalytic subunits, which may enhance NKA turnover rate. These observations provide insight into the pathophysiology of heart failure, wherein low NKA expression may be insufficient to support formation of the complete regulatory complex with the stoichiometry (alpha-beta-PLM)2.


Asunto(s)
Microscopía , ATPasa Intercambiadora de Sodio-Potasio , Membrana Celular/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
5.
Biochemistry ; 61(14): 1419-1430, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35771007

RESUMEN

Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Animales , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/química , Humanos , Mamíferos/metabolismo , Simulación de Dinámica Molecular , Proteínas Musculares , Péptidos/metabolismo , Péptidos/farmacología , Proteolípidos/química , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
6.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805255

RESUMEN

The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.


Asunto(s)
Calcio/metabolismo , Simulación de Dinámica Molecular , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Humanos , Transporte Iónico , Conformación Proteica
7.
Biophys J ; 119(5): 1033-1040, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814059

RESUMEN

The sarcoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions from the cytoplasm to the reticulum lumen at the expense of ATP hydrolysis. In addition to transporting Ca2+, SERCA facilitates bidirectional proton transport across the sarcoplasmic reticulum to maintain the charge balance of the transport sites and to balance the charge deficit generated by the exchange of Ca2+. Previous studies have shown the existence of a transient water-filled pore in SERCA that connects the Ca2+ binding sites with the lumen, but the capacity of this pathway to sustain passive proton transport has remained unknown. In this study, we used the multiscale reactive molecular dynamics method and free energy sampling to quantify the free energy profile and timescale of the proton transport across this pathway while also explicitly accounting for the dynamically coupled hydration changes of the pore. We find that proton transport from the central binding site to the lumen has a microsecond timescale, revealing a novel passive cytoplasm-to-lumen proton flow beside the well-known inverse proton countertransport occurring in active Ca2+ transport. We propose that this proton transport mechanism is operational and serves as a functional conduit for passive proton transport across the sarcoplasmic reticulum.


Asunto(s)
Calcio , Protones , Calcio/metabolismo , Transporte Iónico , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Biophys J ; 119(9): 1917-1926, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33069270

RESUMEN

Sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential for intracellular Ca2+ transport in myocytes. Ca2+-dependent activation of SERCA-PLB provides a control function that regulates cytosolic and SR Ca2+ levels. Although experimental and computational studies alone have led to a greater insight into SERCA-PLB regulation, the structural mechanisms for Ca2+ binding reversing inhibition of the complex remain poorly understood. Therefore, we have performed atomistic simulations totaling 32.7 µs and cell-based intramolecular fluorescence resonance energy transfer (FRET) experiments to determine structural changes of PLB-bound SERCA in response to binding of a single Ca2+ ion. Complementary MD simulations and FRET experiments showed that open-to-closed transitions in the structure of the headpiece underlie PLB inhibition of SERCA, and binding of a single Ca2+ ion is sufficient to shift the protein population toward a structurally closed structure of the complex. Closure is accompanied by functional interactions between the N-domain ß5-ß6 loop and the A-domain and the displacement of the catalytic phosphorylation domain toward a competent structure. We propose that reversal of SERCA-PLB inhibition is achieved by stringing together its controlling modules (A-domain and loop Nß5-ß6) with catalytic elements (P-domain) to regulate function during intracellular Ca2+ signaling. We conclude that binding of a single Ca2+ is a critical mediator of allosteric signaling that dictates structural changes and motions that relieve SERCA inhibition by PLB. Understanding allosteric regulation is of paramount importance to guide therapeutic modulation of SERCA and other evolutionarily related ion-motive ATPases.


Asunto(s)
Proteínas de Unión al Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fosforilación , Unión Proteica , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
9.
Biophys J ; 118(2): 518-531, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31858977

RESUMEN

The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.


Asunto(s)
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Multimerización de Proteína , Proteolípidos/química , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
10.
J Chem Inf Model ; 60(8): 3985-3991, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32668157

RESUMEN

Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 µs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.


Asunto(s)
Proteolípidos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Comunicación , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019581

RESUMEN

Sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLB) are essential components of the cardiac Ca2+ transport machinery. PLB phosphorylation at residue Ser16 (pSer16) enhances SERCA activity in the heart via an unknown structural mechanism. Here, we report a fully atomistic model of SERCA bound to phosphorylated PLB and study its structural dynamics on the microsecond time scale using all-atom molecular dynamics simulations in an explicit lipid bilayer and water environment. The unstructured N-terminal phosphorylation domain of PLB samples different orientations and covers a broad area of the cytosolic domain of SERCA but forms a stable complex mediated by pSer16 interactions with a binding site formed by SERCA residues Arg324/Lys328. PLB phosphorylation does not affect the interaction between the transmembrane regions of the two proteins; however, pSer16 stabilizes a disordered structure of the N-terminal phosphorylation domain that releases key inhibitory contacts between SERCA and PLB. We found that PLB phosphorylation is sufficient to guide the structural transitions of the cytosolic headpiece that are required to produce a competent structure of SERCA. We conclude that PLB phosphorylation serves as an allosteric molecular switch that releases inhibitory contacts and strings together the catalytic elements required for SERCA activation. This atomistic model represents a vivid atomic-resolution visualization of SERCA bound to phosphorylated PLB and provides previously inaccessible insights into the structural mechanism by which PLB phosphorylation releases SERCA inhibition in the heart.


Asunto(s)
Proteínas de Unión al Calcio/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al Calcio/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosfatidilcolinas/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Serina/química , Serina/metabolismo , Termodinámica
12.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532023

RESUMEN

Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Fosforilación , Conformación Proteica , Dominios Proteicos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Tapsigargina/química , Tapsigargina/metabolismo
13.
Biophys J ; 116(4): 633-647, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30712785

RESUMEN

The interaction of phospholamban (PLN) with the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump is a major regulatory axis in cardiac muscle contractility. The prevailing model involves reversible inhibition of SERCA by monomeric PLN and storage of PLN as an inactive pentamer. However, this paradigm has been challenged by studies demonstrating that PLN remains associated with SERCA and that the PLN pentamer is required for the regulation of cardiac contractility. We have previously used two-dimensional (2D) crystallization and electron microscopy to study the interaction between SERCA and PLN. To further understand this interaction, we compared small helical crystals and large 2D crystals of SERCA in the absence and presence of PLN. In both crystal forms, SERCA molecules are organized into identical antiparallel dimer ribbons. The dimer ribbons pack together with distinct crystal contacts in the helical versus large 2D crystals, which allow PLN differential access to potential sites of interaction with SERCA. Nonetheless, we show that a PLN oligomer interacts with SERCA in a similar manner in both crystal forms. In the 2D crystals, a PLN pentamer interacts with transmembrane segments M3 of SERCA and participates in a crystal contact that bridges neighboring SERCA dimer ribbons. In the helical crystals, an oligomeric form of PLN also interacts with M3 of SERCA, though the PLN oligomer straddles a SERCA-SERCA crystal contact. We conclude that the pentameric form of PLN interacts with M3 of SERCA and that it plays a distinct structural and functional role in SERCA regulation. The interaction of the pentamer places the cytoplasmic domains of PLN at the membrane surface proximal to the calcium entry funnel of SERCA. This interaction may cause localized perturbation of the membrane bilayer as a mechanism for increasing the turnover rate of SERCA.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Multimerización de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
14.
J Biol Chem ; 293(32): 12405-12414, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29934304

RESUMEN

Sarcoplasmic reticulum Ca2+-ATPase (SERCA) is critical for cardiac Ca2+ transport. Reversal of phospholamban (PLB)-mediated SERCA inhibition by saturating Ca2+ conditions operates as a physiological rheostat to reactivate SERCA function in the absence of PLB phosphorylation. Here, we performed extensive atomistic molecular dynamics simulations to probe the structural mechanism of this process. Simulation of the inhibitory complex at superphysiological Ca2+ concentrations ([Ca2+] = 10 mm) revealed that Ca2+ ions interact primarily with SERCA and the lipid headgroups, but not with PLB's cytosolic domain or the cytosolic side of the SERCA-PLB interface. At this [Ca2+], a single Ca2+ ion was translocated from the cytosol to the transmembrane transport sites. We used this Ca2+-bound complex as an initial structure to simulate the effects of saturating Ca2+ at physiological conditions ([Ca2+]total ≈ 400 µm). At these conditions, ∼30% of the Ca2+-bound complexes exhibited structural features consistent with an inhibited state. However, in ∼70% of the Ca2+-bound complexes, Ca2+ moved to transport site I, recruited Glu771 and Asp800, and disrupted key inhibitory contacts involving the conserved PLB residue Asn34 Structural analysis showed that Ca2+ induces only local changes in interresidue inhibitory interactions, but does not induce repositioning or changes in PLB structural dynamics. Upon relief of SERCA inhibition, Ca2+ binding produced a site I configuration sufficient for subsequent SERCA activation. We propose that at saturating [Ca2+] and in the absence of PLB phosphorylation, binding of a single Ca2+ ion in the transport sites rapidly shifts the equilibrium toward a noninhibited SERCA-PLB complex.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Calcio/farmacología , Conformación Proteica/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Transporte Iónico , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores
15.
Proc Natl Acad Sci U S A ; 113(12): 3233-8, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26908877

RESUMEN

We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to ß-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.


Asunto(s)
Proteínas Portadoras/metabolismo , Análisis Espectral/métodos , Regulación Alostérica , Animales , Proteínas Portadoras/química , Transferencia Resonante de Energía de Fluorescencia , Ratones , Simulación de Dinámica Molecular , Fosforilación , Conformación Proteica
16.
Phys Chem Chem Phys ; 19(15): 10153-10162, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28374038

RESUMEN

We have performed microsecond molecular dynamics (MD) simulations to determine the mechanism for protonation-dependent structural transitions of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), one of the most prominent members of the large P-type ATPase superfamily that transports ions across biological membranes. The release of two H+ from the transport sites activates SERCA by inducing a structural transition between low (E2) and high (E1) Ca2+-affinity states (E2-to-E1 transition), but the structural mechanism by which transport site deprotonation facilitates this transition is unknown. We performed microsecond all-atom MD simulations to determine the effects of transport site protonation on the structural dynamics of the E2 state in solution. We found that the protonated E2 state has structural characteristics that are similar to those observed in crystal structures of E2. Upon deprotonation, a single Na+ ion rapidly (<10 ns) binds to the transmembrane transport sites and induces a kink in M5, disrupts the M3-M5 interface, and increases the mobility of the M3/A-M3 linker. Principal component analysis showed that counter-rotation of the cytosolic N-A domains about the membrane normal axis, which is the primary motion driving the E2-to-E1 transition, is present in both protonated and deprotonated E2 states; however, protonation-dependent structural changes in the transmembrane domain control the hierarchical organization and amplitude of this motion. We propose that preexisting rigid-body domain motions underlie structural transitions of SERCA, where the functionally important directionality is preserved while transport site protonation controls the dominance and amplitude of motion to shift the equilibrium between the E1 and E2 states. We conclude that ligand-induced modulation of preexisting domain motions is likely a common theme in structural transitions of the P-type ATPase superfamily.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Sitios de Unión , Transporte Iónico , Ligandos , Simulación de Dinámica Molecular , Análisis de Componente Principal , Dominios Proteicos , Estructura Terciaria de Proteína , Protones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sodio/química , Sodio/metabolismo
17.
Biochemistry ; 55(44): 6083-6086, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27731980

RESUMEN

We have performed microsecond (µs) molecular dynamics simulation (MDS) to identify structural mechanisms for sarcolipin (SLN) uncoupling of Ca2+ transport from ATP hydrolysis for the sarcoplasmic reticulum Ca2+-ATPase (SERCA). SLN regulates muscle metabolism and energy expenditure to provide resistance against diet-induced obesity and extreme cold. MDS demonstrated that the cytosolic domain of SLN induces a salt bridge-mediated structural rearrangement in the energy-transduction domain of SERCA. We propose that this structural change uncouples SERCA by perturbing Ca2+ occlusion at residue E309 in transport site II, thus facilitating Ca2+ backflux to the cytosol. Our results have important implications for designing muscle-based therapies for human obesity.


Asunto(s)
Metabolismo Energético , Proteínas Musculares/química , Proteolípidos/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Transducción de Señal , Conformación Proteica
18.
Biophys J ; 108(7): 1697-1708, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863061

RESUMEN

We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state. Estimation of pKa values of the acidic residues in the transport sites indicates that at normal intracellular pH (7.1-7.2), PLB-bound SERCA populates an E1 state that is deprotonated at residues E309 and D800 yet protonated at residue E771. We performed three independent microsecond-long MD simulations to evaluate the structural dynamics of SERCA-PLB in a solution containing 100 mM K(+) and 3 mM Mg(2+). Principal component analysis showed that PLB-bound SERCA lies exclusively along the structural ensemble of the E1 state. We found that the transport sites of PLB-bound SERCA are completely exposed to the cytosol and that K(+) ions bind transiently (≤5 ns) and nonspecifically (nine different positions) to the two transport sites, with a total occupancy time of K(+) in the transport sites of 80%. We propose that PLB binding to SERCA populates a novel (to our knowledge) E1 intermediate, E1⋅H(+)771. This intermediate serves as a kinetic trap that controls headpiece dynamics and depresses the structural transitions necessary for Ca(2+)-dependent activation of SERCA. We conclude that PLB-mediated regulation of SERCA activity in the heart results from biochemical and structural transitions that occur primarily in the E1 state of the pump.


Asunto(s)
Proteínas de Unión al Calcio/química , Simulación de Dinámica Molecular , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Datos de Secuencia Molecular , Potasio/metabolismo , Unión Proteica , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
19.
Biochemistry ; 54(33): 5235-41, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26250140

RESUMEN

The calcium pump [sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA)] transports Ca(2+) from the cytosol to the SR lumen at the expense of ATP hydrolysis and proton countertransport, thus playing a central role in Ca(2+) homeostasis and muscle contractility. Proton countertransport via deprotonation of transport site residue Glu309 is a critical first step in SERCA activation because it accelerates the E2-E1 structural transition. Previous studies have suggested that flipping of Glu309 toward the cytosol constitutes the primary mechanism for Glu309 deprotonation, but no conclusive data to support this hypothesis have been published. Therefore, we performed three independent 1 µs molecular dynamics simulations of the E2 state protonated at transport site residues Glu309, Glu771, and Glu908. Structural analysis and pKa calculations showed that Glu309 deprotonation occurs by an inward-to-outward side-chain transition. We also found that Glu309 deprotonation and proton countertransport occur through transient (~113 ps) water wires connecting Glu309 with the cytosol. Although both mechanisms are operational, we found that transient water wire formation, and not Glu309 flipping, is the primary mechanism for Glu309 deprotonation and translocation of protons to the cytosol. The outward-to-inward transition of protonated Glu309 and the presence of water wires suggest that protons from the cytosol might be passively transported to the lumen via Glu309. However, structural analysis indicates that passive SR proton leakage into the lumen unlikely occurs through Glu309 in the E2 state. These findings provide a time-resolved visualization of the first step in the molecular mechanism of SERCA activation and proton transport across the SR.


Asunto(s)
Simulación de Dinámica Molecular , Protones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transporte Biológico , Calcio/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Conformación Proteica , Agua/química
20.
J Am Chem Soc ; 137(22): 7055-8, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26028459

RESUMEN

The calcium pump sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) counter-transports Ca(2+) and H(+) at the expense of ATP hydrolysis. SERCA uses separate proton and metal ion pathways during active transport to neutralize the highly charged transport site, thus preserving SERCA's structural stability during active Ca(2+) transport. Although separate metal ion and proton pathways have been identified during slow (millisecond) structural transitions of SERCA, the existence of simultaneous metal and proton pathways during fast (microsecond) structural transitions remains unknown. We have analyzed microsecond-long trajectories of E1·H(+)771, a protonated intermediate of the pump populated during SERCA regulation. We found a transiently established hydrophobic pore in the luminal side of the transmembrane helices 6, 8, and 9. This narrow (0.5-0.6 nm) pore connects the transport sites to the sarcoplasmic reticulum lumen through a chain of water molecules. Protein pKa calculations of the transport site residues and structural analysis of the water molecules showed that this pore is suitable for proton transport. This transient proton pathway ensures neutralization of the transport sites during the rapid structural transitions associated with regulation of the pump. We conclude that this transient proton pathway plays a central role in optimizing active Ca(2+) transport by SERCA. Our discovery provides insight into ion-exchange mechanisms through transient hydrophobic pores in P-type ATPases.


Asunto(s)
Modelos Químicos , Protones , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Cristalografía , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA