Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Psychiatry ; 28(6): 2328-2342, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37217677

RESUMEN

The proper maturation of emotional and sensory circuits requires fine-tuning of serotonin (5-HT) level during early postnatal development. Consistently, dysfunctions of the serotonergic system have been associated with neurodevelopmental psychiatric diseases, including autism spectrum disorders (ASD). However, the mechanisms underlying the developmental effects of 5-HT remain partially unknown, one obstacle being the action of 5-HT on different cell types. Here, we focused on microglia, which play a role in brain wiring refinement, and we investigated whether the control of these cells by 5-HT is relevant for neurodevelopment and spontaneous behaviors in mice. Since the main 5-HT sensor in microglia is the 5-HT2B receptor subtype, we prevented 5-HT signaling specifically in microglia by conditional invalidation of the Htr2b gene in these cells. We observed that abrogating the serotonergic control of microglia during early postnatal development affects the phagolysosomal compartment of these cells and their proximity to dendritic spines and perturbs neuronal circuits maturation. Furthermore, this early ablation of microglial 5-HT2B receptors leads to adult hyperactivity in a novel environment and behavioral defects in sociability and flexibility. Importantly, we show that these behavioral alterations result from a developmental effect, since they are not observed when microglial Htr2b invalidation is induced later, at P30 onward. Thus, a primary alteration of 5-HT sensing in microglia, during a critical time window between birth and P30, is sufficient to impair social and flexibility skills. This link between 5-HT and microglia may explain the association between serotonergic dysfunctions and behavioral traits like impaired sociability and inadaptability to novelty, which are prominent in psychiatric disorders such as ASD.


Asunto(s)
Microglía , Serotonina , Humanos , Ratones , Animales , Serotonina/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Transducción de Señal
2.
J Neurosci ; 42(19): 3896-3918, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35396327

RESUMEN

During aging, microglia produce inflammatory factors, show reduced tissue surveillance, altered interactions with synapses, and prolonged responses to CNS insults, positioning these cells to have profound impact on the function of nearby neurons. We and others recently showed that microglial attributes differ significantly across brain regions in young adult mice. However, the degree to which microglial properties vary during aging is largely unexplored. Here, we analyze and manipulate microglial aging within the basal ganglia, brain circuits that exhibit prominent regional microglial heterogeneity and where neurons are vulnerable to functional decline and neurodegenerative disease. In male and female mice, we demonstrate that VTA and SNc microglia exhibit unique and premature responses to aging, compared with cortex and NAc microglia. This is associated with localized VTA/SNc neuroinflammation that may compromise synaptic function as early as middle age. Surprisingly, systemic inflammation, local neuron death, and astrocyte aging do not appear to underlie these early aging responses of VTA and SNc microglia. Instead, we found that microglial lysosome status was tightly linked to early aging of VTA microglia. Microglial ablation/repopulation normalized VTA microglial lysosome swelling and suppressed increases in VTA microglial density during aging. In contrast, CX3CR1 receptor KO exacerbated VTA microglial lysosome rearrangements and VTA microglial proliferation during aging. Our findings reveal a previously unappreciated regional variation in onset and magnitude of microglial proliferation and inflammatory factor production during aging and highlight critical links between microglial lysosome status and local microglial responses to aging.SIGNIFICANCE STATEMENT Microglia are CNS cells that are equipped to regulate neuronal health and function throughout the lifespan. We reveal that microglia in select brain regions begin to proliferate and produce inflammatory factors in late middle age, months before microglia in other brain regions. These findings demonstrate that CNS neuroinflammation during aging is not uniform. Moreover, they raise the possibility that local microglial responses to aging play a critical role in determining which populations of neurons are most vulnerable to functional decline and neurodegenerative disease.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Femenino , Masculino , Ratones , Enfermedades Neuroinflamatorias , Neuronas/fisiología , Sinapsis
3.
Glia ; 69(3): 638-654, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33095507

RESUMEN

Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.


Asunto(s)
Conducta de Enfermedad , Microglía , Animales , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Receptor de Serotonina 5-HT2B/genética , Serotonina , Pérdida de Peso
4.
J Vis Exp ; (143)2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30774130

RESUMEN

Microglial cells are resident innate immune cells of the brain that constantly scan their environment with their long processes and, upon disruption of homeostasis, undergo rapid morphological changes. For example, a laser lesion induces in a few minutes an oriented growth of microglial processes, also called "directional motility", toward the site of injury. A similar effect can be obtained by delivering locally ATP or serotonin (5-hydroxytryptamine [5-HT]). In this article, we describe a protocol to induce a directional growth of microglial processes toward a local application of ATP or 5-HT in acute brain slices of young and adult mice and to image this attraction over time by multiphoton microscopy. A simple method of quantification with free and open-source image analysis software is proposed. A challenge that still characterizes acute brain slices is the limited time, decreasing with age, during which the cells remain in a physiological state. This protocol, thus, highlights some technical improvements (medium, air-liquid interface chamber, imaging chamber with a double perfusion) aimed at optimizing the viability of microglial cells over several hours, especially in slices from adult mice.


Asunto(s)
Adenosina Trifosfato/farmacología , Encéfalo/diagnóstico por imagen , Microglía/citología , Microscopía de Fluorescencia por Excitación Multifotónica , Serotonina/farmacología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Ratones , Microglía/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA