Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; 62(9): e202214788, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36478637

RESUMEN

Hollow-core photonic crystal fibers (HC-PCFs) provide a novel approach for in situ UV/Vis spectroscopy with enhanced detection sensitivity. Here, we demonstrate that longer optical path lengths than afforded by conventional cuvette-based UV/Vis spectroscopy can be used to detect and identify the CoI and CoII states in hydrogen-evolving cobaloxime catalysts, with spectral identification aided by comparison with DFT-simulated spectra. Our findings show that there are two types of signals observed for these molecular catalysts; a transient signal and a steady-state signal, with the former being assigned to the CoI state and the latter being assigned to the CoII state. These observations lend support to a unimolecular pathway, rather than a bimolecular pathway, for hydrogen evolution. This study highlights the utility of fiber-based microreactors for understanding these and a much wider range of homogeneous photocatalytic systems in the future.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 2026-2034, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520699

RESUMEN

The effects of time-varying measurement noise on transmission matrix acquisition processes are considered for the first time, to our knowledge. Dominant noise sources are discussed, and the noise properties of a typical interferometer system used for characterizing a multimode fiber transmission matrix are quantified. It is demonstrated that an appropriate choice of measurement basis allows a more accurate transmission matrix to be more quickly obtained in the presence of measurement noise. Finally, it is shown that characterizing the noise figure of the experimental system allows the inverse transmission matrix to be constructed with an ideal amount of regularization, which can in turn be used for optimal image acquisition.

3.
Appl Opt ; 61(15): 4315-4321, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36256291

RESUMEN

A complex-valued transmission matrix describing a scattering medium can be constructed from a sequence of many interferometric measurements. A major challenge in such experiments is to correct for rapid phase drift of the optical system during the data acquisition process, especially when the phase drifts significantly between consecutive measurements. Therefore, a new method is presented where the exact phase drift between two measurements is characterized and corrected using a single additional measurement. This approach removes the need to continuously track the phase and significantly relaxes the phase stability requirements of the interferometer, allowing transmission matrices to be constructed in the presence of fast and erratic phase drift.

4.
Anal Chem ; 93(2): 895-901, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33315379

RESUMEN

Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.

5.
Opt Express ; 26(23): 30245-30254, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30469900

RESUMEN

Higher-order modes up to LP33 are controllably excited in water-filled kagomé- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match those of the fiber modes, resulting in typical launch efficiencies of 10-20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagomé HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.

6.
Analyst ; 142(6): 925-929, 2017 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28112294

RESUMEN

A hollow-core photonic crystal fibre (HC-PCF), guided by photonic bandgap effects or anti-resonant reflection, offers strong light confinement and long photochemical interaction lengths in a microscale channel filled with a solvent of refractive index lower than that of glass (usually fused silica). These unique advantages have motivated its recent use as a highly efficient and versatile microreactor for liquid-phase photochemistry and catalysis. In this work, we use a single-ring HC-PCF made from a high-index soft glass, thus enabling photochemical experiments in higher index solvents. The optimized light-matter interaction in the fibre is used to strongly enhance the reaction rate in a proof-of-principle photolysis reaction in toluene.

7.
Opt Express ; 24(3): 2370-82, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26906812

RESUMEN

Since 1908, when Mie reported analytical expressions for the fields scattered by a spherical particle upon incidence of plane-waves, generalizing his analysis for the case of an arbitrary incident wave has been an open question because of the cancellation of the prefactor radial spherical Bessel function. This cancellation was obtained before by our own group for a highly focused beam centered in the objective. In this work, however, we show for the first time how these terms can be canceled out for any arbitrary incident field that satisfies Maxwells equations, and obtain analytical expressions for the beam shape coefficients. We show several examples on how to use our method to obtain analytical beam shape coefficients for: Bessel beams, general hollow waveguide modes and specific geometries such as cylindrical and rectangular. Our method uses the vector potential, which shows the interesting characteristic of being gauge invariant. These results are highly relevant for speeding up numerical calculation of light scattering applications such as the radiation forces acting on spherical particles placed in an arbitrary electromagnetic field, as in an optical tweezers system.

8.
Opt Express ; 22(21): 25570-9, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401590

RESUMEN

We introduce the concept of Doppler-assisted tomography (DAT) and show that it can be applied successfully to non-invasive imaging of the internal microstructure of a photonic crystal fiber. The fiber is spun at ~10 Hz around its axis and laterally illuminated with a laser beam. Monitoring the time-dependent Doppler shift of the light scattered by the hollow channels permits the azimuthal angle and radial position of individual channels to be measured. An inverse Radon transform is used to construct an image of the microstructure from the frequency-modulated scattered signal. We also show that DAT can image sub-wavelength features and monitor the structure along a tapered fiber, which is not possible using other techniques without cutting up the taper into several short pieces or filling it with index-matching oil. The non-destructive nature of DAT means that it could potentially be applied to image the fiber microstructure as it emerges from the drawing tower, or indeed to carry out tomography on any transparent microstructured cylindrical object.


Asunto(s)
Efecto Doppler , Luz , Nanoestructuras/análisis , Fotones , Tomografía Computarizada por Rayos X/métodos
9.
Chem Soc Rev ; 42(22): 8629-48, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23753016

RESUMEN

In this review, we introduce photonic crystal fibre as a novel optofluidic microdevice that can be employed as both a versatile chemical sensor and a highly efficient microreactor. We demonstrate that it provides an excellent platform in which light and chemical samples can strongly interact for quantitative spectroscopic analysis or photoactivation purposes. The use of photonic crystal fibre in photochemistry and sensing is discussed and recent results on gas and liquid sensing as well as on photochemical and catalytic reactions are reviewed. These developments demonstrate that the tight light confinement, enhanced light-matter interaction and reduced sample volume offered by photonic crystal fibre make it useful in a wide range of chemical applications.

10.
ACS Catal ; 14(16): 12006-12015, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39169903

RESUMEN

Carbon nanodots (CNDs) are nanosized light-harvesters emerging as next-generation photosensitizers in photocatalytic reactions. Despite their ever-increasing potential applications, the intricacies underlying their photoexcited charge carrier dynamics are yet to be elucidated. In this study, nitrogen-doped graphitic CNDs (NgCNDs) are selectively excited in the presence of methyl viologen (MV2+, redox mediator) and different electron donors (EDs), namely ascorbic acid (AA) and ethylenediaminetetraacetic acid (EDTA). The consequent formation of the methyl viologen radical cation (MV•+) is investigated, and the excited charge carrier dynamics of the photocatalytic system are understood on a 0.1 ps-1 ms time range, providing spectroscopic evidence of oxidative or reductive quenching mechanisms experienced by optically excited NgCNDs (NgCNDs*) depending on the ED implemented. In the presence of AA, NgCNDs* undergo oxidative quenching by MV2+ to form MV•+, which is short-lived due to dehydroascorbic acid, a product of photoinduced hole quenching of oxidized NgCNDs. The EDTA-mediated reductive quenching of NgCNDs* is observed to be at least 2 orders of magnitude slower due to screening by EDTA-MV2+ complexes, but the MV•+ population is stable due to the irreversibly oxidized EDTA preventing a back reaction. In general, our methodology provides a distinct solution with which to study charge transfer dynamics in photocatalytic systems on an extended time range spanning 10 orders of magnitude. This approach generates a mechanistic understanding to select and develop suitable EDs to promote photocatalytic reactions.

11.
ACS Photonics ; 11(8): 3167-3177, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39184181

RESUMEN

We introduce a flexible microscale all-fiber-optic Raman probe which can be embedded into devices to enable operando in situ spectroscopy. The facile-constructed probe is composed of a nested antiresonant nodeless hollow-core fiber combined with an integrated high refractive index barium titanate microlens. Pump laser 785 nm excitation and near-infrared collection are independently characterized, demonstrating an excitation spot of full-width-half-maximum 1.1 µm. Since this is much smaller than the effective collection area, it has the greatest influence on the collected Raman scattering. Our characterization scheme provides a suitable protocol for testing the efficacy of these fiber probes using various combinations of fiber types and microspheres. Raman measurements on a surface-enhanced Raman spectroscopy sample and a copper battery electrode demonstrate the viability of the fiber probe as an alternative to bulk optic Raman microscopes, giving comparable collection to a 10 objective, thus paving the way for operando Raman studies in applications such as lithium battery monitoring.

12.
Opt Express ; 21(24): 29383-91, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24514492

RESUMEN

We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.


Asunto(s)
Micromanipulación/instrumentación , Nanopartículas/ultraestructura , Nanoporos/ultraestructura , Pinzas Ópticas , Resonancia por Plasmón de Superficie/instrumentación , Aire , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Fotones
13.
ACS Catal ; 13(13): 9090-9101, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37441232

RESUMEN

Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 µL per measurement and with a detectability of <1 µM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.

14.
Light Sci Appl ; 11(1): 281, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151089

RESUMEN

Nanomaterials capable of confining light are desirable for enhancing spectroscopies such as Raman scattering, infrared absorption, and nonlinear optical processes. Plasmonic superlattices have shown the ability to host collective resonances in the mid-infrared, but require stringent fabrication processes to create well-ordered structures. Here, we demonstrate how short-range-ordered Au nanoparticle multilayers on a mirror, self-assembled by a sub-nm molecular spacer, support collective plasmon-polariton resonances in the visible and infrared, continuously tunable beyond 11 µm by simply varying the nanoparticle size and number of layers. The resulting molecule-plasmon system approaches vibrational strong coupling, and displays giant Fano dip strengths, SEIRA enhancement factors ~ 106, light-matter coupling strengths g ~ 100 cm-1, Purcell factors ~ 106, and mode volume compression factors ~ 108. The collective plasmon-polariton mode is highly robust to nanoparticle vacancy disorder and is sustained by the consistent gap size defined by the molecular spacer. Structural disorder efficiently couples light into the gaps between the multilayers and mirror, enabling Raman and infrared sensing of sub-picolitre sample volumes.

15.
Methods Appl Fluoresc ; 10(4)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36084629

RESUMEN

The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.


Asunto(s)
Fotones , Albúmina Sérica Bovina , Fluorescencia
16.
Nat Commun ; 13(1): 1651, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347137

RESUMEN

Improved analytical tools are urgently required to identify degradation and failure mechanisms in Li-ion batteries. However, understanding and ultimately avoiding these detrimental mechanisms requires continuous tracking of complex electrochemical processes in different battery components. Here, we report an operando spectroscopy method that enables monitoring the chemistry of a carbonate-based liquid electrolyte during electrochemical cycling in Li-ion batteries with a graphite anode and a LiNi0.8Mn0.1Co0.1O2 cathode. By embedding a hollow-core optical fibre probe inside a lab-scale pouch cell, we demonstrate the effective evolution of the liquid electrolyte species by background-free Raman spectroscopy. The analysis of the spectroscopy measurements reveals changes in the ratio of carbonate solvents and electrolyte additives as a function of the cell voltage and show the potential to track the lithium-ion solvation dynamics. The proposed operando methodology contributes to understanding better the current Li-ion battery limitations and paves the way for studies of the degradation mechanisms in different electrochemical energy storage systems.

17.
Chem Commun (Camb) ; 58(75): 10548-10551, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36047311

RESUMEN

We report the use of optofluidic hollow-core photonic crystal fibres as microreactors for Stern-Volmer (SV) luminescence quenching analysis of visible-light photocatalytic reactions. This technology enables measurements on nanolitre volumes and paves the way for automated SV analyses in continuous flow that minimise catalyst and reagent usage. The method is showcased using a recently developed photoredox-catalysed α-C-H alkylation reaction of unprotected primary alkylamines.

18.
Chemistry ; 16(19): 5607-12, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20391563

RESUMEN

We report the use of a liquid-filled hollow-core photonic crystal fiber (PCF) as a highly controlled photochemical reactor. Hollow-core PCFs have several major advantages over conventional sample cells: the sample volume per optical path length is very small (2.8 nL cm(-1) in the fiber used), long optical path lengths are possible as a result of very low intrinsic waveguide loss, and furthermore the light travels in a diffractionless single mode with a constant transverse intensity profile. As a proof of principle, the (very low) quantum yield of the photochemical conversion of vitamin B(12), cyanocobalamin (CNCbl) to hydroxocobalamin ([H(2)OCbl](+)) in aqueous solution was measured for several pH values from 2.5 to 7.5. The dynamics of the actively induced reaction were monitored in real-time by broadband absorption spectroscopy. The PCF nanoreactor required ten thousand times less sample volume compared to conventional techniques. Furthermore, the enhanced sensitivity and optical pump intensity implied that even systems with very small quantum yields can be measured very quickly--in our experiments one thousand times faster than in a conventional cuvette.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Cristales Líquidos/química , Fotoquímica , Vitamina B 12/química , Cristalización , Hidrólisis , Luz , Soluciones/química , Agua
19.
Light Sci Appl ; 7: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839617

RESUMEN

Optically levitated micro- and nanoparticles offer an ideal playground for investigating photon-phonon interactions over macroscopic distances. Here we report the observation of long-range optical binding of multiple levitated microparticles, mediated by intermodal scattering and interference inside the evacuated core of a hollow-core photonic crystal fibre (HC-PCF). Three polystyrene particles with a diameter of 1 µm are stably bound together with an inter-particle distance of ~40 µm, or 50 times longer than the wavelength of the trapping laser. The levitated bound-particle array can be translated to-and-fro over centimetre distances along the fibre. When evacuated to a gas pressure of 6 mbar, the collective mechanical modes of the bound-particle array are able to be observed. The measured inter-particle distance at equilibrium and mechanical eigenfrequencies are supported by a novel analytical formalism modelling the dynamics of the binding process. The HC-PCF system offers a unique platform for investigating the rich optomechanical dynamics of arrays of levitated particles in a well-isolated and protected environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA