Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; 35(10): e21946, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34555226

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening illness characterized by decreased alveolar-capillary barrier function, pulmonary edema consisting of proteinaceous fluid, and inhibition of net alveolar fluid transport responsible for resolution of pulmonary edema. There is currently no pharmacotherapy that has proven useful to prevent or treat ARDS, and two trials using beta-agonist therapy to treat ARDS demonstrated no effect. Prior studies indicated that IL-8-induced heterologous desensitization of the beta2-adrenergic receptor (ß2 -AR) led to decreased beta-agonist-induced mobilization of cyclic adenosine monophosphate (cAMP). Interestingly, phosphodiesterase (PDE) 4 inhibitors have been used in human airway diseases characterized by low intracellular cAMP levels and increases in specific cAMP hydrolyzing activity. Therefore, we hypothesized that PDE4 would mediate IL-8-induced heterologous internalization of the ß2 -AR and that PDE4 inhibition would restore beta-agonist-induced functions. We determined that CINC-1 (a functional IL-8 analog in rats) induces internalization of ß2 -AR from the cell surface, and arrestin-2, PDE4, and ß2 -AR form a complex during this process. Furthermore, we determined that cAMP associated with the plasma membrane was adversely affected by ß2 -AR heterologous desensitization. Additionally, we determined that rolipram, a PDE4 inhibitor, reversed CINC-1-induced derangements of cAMP and also caused ß2 -AR to successfully recycle back to the cell surface. Finally, we demonstrated that rolipram could reverse CINC-1-mediated inhibition of beta-agonist-induced alveolar fluid clearance in a murine model of trauma-shock. These results indicate that PDE4 plays a role in CINC-1-induced heterologous internalization of the ß2 -AR; PDE4 inhibition reverses these effects and may be a useful adjunct in particular ARDS patients.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Interleucina-8/inmunología , Receptores Adrenérgicos beta 2/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Quimiocina CXCL1/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/farmacología , Regulación hacia Abajo/efectos de los fármacos , Masculino , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , beta-Arrestina 1/metabolismo
2.
FASEB J ; 34(2): 3305-3317, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31916311

RESUMEN

Pulmonary edema associated with increased vascular permeability is a severe complication of Pseudomonas (P.) aeruginosa-induced acute lung injury. The mechanisms underlying P aeruginosa-induced vascular permeability are not well understood. In the present study, we investigated the role of neuronal Wiskott Aldrich syndrome protein (N-WASP) in modulating P aeruginosa-induced vascular permeability. Using lung microvascular endothelial and alveolar epithelial cells, we demonstrated that N-WASP downregulation attenuated P aeruginosa-induced actin stress fiber formation and prevented paracellular permeability. P aeruginosa-induced dissociation between VE-cadherin and ß-catenin, but increased association between N-WASP and VE-cadherin, suggesting a role for N-WASP in promoting P aeruginosa-induced adherens junction rupture. P aeruginosa increased N-WASP-Y256 phosphorylation, which required the activation of Rho GTPase and focal adhesion kinase. Increased N-WASP-Y256 phosphorylation promotes N-WASP and integrin αVß6 association as well as TGF-ß-mediated permeability across alveolar epithelial cells. Inhibition of N-WASP-Y256 phosphorylation by N-WASP-Y256F overexpression blocked N-WASP effects in P aeruginosa-induced actin stress fiber formation and increased paracellular permeability. In vivo, N-WASP knockdown attenuated the development of pulmonary edema and improved survival in a mouse model of P aeruginosa pneumonia. Together, our data demonstrate that N-WASP plays an essential role in P aeruginosa-induced vascular permeability and pulmonary edema through the modulation of actin cytoskeleton dynamics.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Permeabilidad Capilar , Pulmón/metabolismo , Neumonía/metabolismo , Infecciones por Pseudomonas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Uniones Adherentes/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Cadherinas/metabolismo , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrinas/metabolismo , Pulmón/microbiología , Ratones , Pseudomonas aeruginosa/patogenicidad , Ratas , Factor de Crecimiento Transformador beta/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , beta Catenina/metabolismo , Proteínas de Unión al GTP rho/metabolismo
4.
PLoS Med ; 15(3): e1002522, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522519

RESUMEN

BACKGROUND: Trauma is the leading cause of death and disability in patients aged 1-46 y. Severely injured patients experience considerable blood loss and hemorrhagic shock requiring treatment with massive transfusion of red blood cells (RBCs). Preclinical and retrospective human studies in trauma patients have suggested that poorer therapeutic efficacy, increased severity of organ injury, and increased bacterial infection are associated with transfusion of large volumes of stored RBCs, although the mechanisms are not fully understood. METHODS AND FINDINGS: We developed a murine model of trauma hemorrhage (TH) followed by resuscitation with plasma and leukoreduced RBCs (in a 1:1 ratio) that were banked for 0 (fresh) or 14 (stored) days. Two days later, lungs were infected with Pseudomonas aeruginosa K-strain (PAK). Resuscitation with stored RBCs significantly increased the severity of lung injury caused by P. aeruginosa, as demonstrated by higher mortality (median survival 35 h for fresh RBC group and 8 h for stored RBC group; p < 0.001), increased pulmonary edema (mean [95% CI] 106.4 µl [88.5-124.3] for fresh RBCs and 192.5 µl [140.9-244.0] for stored RBCs; p = 0.003), and higher bacterial numbers in the lung (mean [95% CI] 1.2 × 10(7) [-1.0 × 10(7) to 2.5 × 10(7)] for fresh RBCs and 3.6 × 10(7) [2.5 × 10(7) to 4.7 × 10(7)] for stored RBCs; p = 0.014). The mechanism underlying this increased infection susceptibility and severity was free-heme-dependent, as recombinant hemopexin or pharmacological inhibition or genetic deletion of toll-like receptor 4 (TLR4) during TH and resuscitation completely prevented P. aeruginosa-induced mortality after stored RBC transfusion (p < 0.001 for all groups relative to stored RBC group). Evidence from studies transfusing fresh and stored RBCs mixed with stored and fresh RBC supernatants, respectively, indicated that heme arising both during storage and from RBC hemolysis post-resuscitation plays a role in increased mortality after PAK (p < 0.001). Heme also increased endothelial permeability and inhibited macrophage-dependent phagocytosis in cultured cells. Stored RBCs also increased circulating high mobility group box 1 (HMGB1; mean [95% CI] 15.4 ng/ml [6.7-24.0] for fresh RBCs and 50.3 ng/ml [12.3-88.2] for stored RBCs), and anti-HMGB1 blocking antibody protected against PAK-induced mortality in vivo (p = 0.001) and restored macrophage-dependent phagocytosis of P. aeruginosa in vitro. Finally, we showed that TH patients, admitted to the University of Alabama at Birmingham ER between 1 January 2015 and 30 April 2016 (n = 50), received high micromolar-millimolar levels of heme proportional to the number of units transfused, sufficient to overwhelm endogenous hemopexin levels early after TH and resuscitation. Limitations of the study include lack of assessment of temporal changes in different products of hemolysis after resuscitation and the small sample size precluding testing of associations between heme levels and adverse outcomes in resuscitated TH patients. CONCLUSIONS: We provide evidence that large volume resuscitation with stored blood, compared to fresh blood, in mice increases mortality from subsequent pneumonia, which occurs via mechanisms sensitive to hemopexin and TLR4 and HMGB1 inhibition.


Asunto(s)
Transfusión de Eritrocitos , Hemopexina/análisis , Hemorragia/terapia , Neumonía , Infecciones por Pseudomonas , Choque Hemorrágico/complicaciones , Reacción a la Transfusión , Heridas y Lesiones/complicaciones , Adulto , Animales , Transfusión de Eritrocitos/efectos adversos , Transfusión de Eritrocitos/métodos , Eritrocitos/metabolismo , Femenino , Proteína HMGB1/análisis , Hemorragia/etiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neumonía/sangre , Neumonía/etiología , Neumonía/mortalidad , Infecciones por Pseudomonas/sangre , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/mortalidad , Ratas , Transducción de Señal , Análisis de Supervivencia , Receptor Toll-Like 4/análisis , Receptor Toll-Like 4/antagonistas & inhibidores , Reacción a la Transfusión/diagnóstico , Reacción a la Transfusión/metabolismo , Reacción a la Transfusión/mortalidad
5.
J Neurotrauma ; 38(8): 989-999, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203297

RESUMEN

Traumatic brain injury (TBI) is the leading cause of injury-related death and disability in patients under the age of 46 years. Survivors of the initial injury often endure systemic complications such as pulmonary infection, and Pseudomonas aeruginosa is one of the most common causes of nosocomial pneumonia in intensive care units. Female patients are less likely to develop secondary pneumonia after TBI, and pre-clinical studies have revealed a salutary role for estrogen after trauma. Therefore, we hypothesized that female mice would experience less mortality after post-TBI pneumonia with P. aeruginosa. We employed a mouse model of TBI followed by P. aeruginosa pneumonia. Male mice had greater mortality and impaired lung bacterial clearance after post-TBI pneumonia compared with female mice. This was confirmed as a difference in sex hormones, as oophorectomized wild-type mice had mortality and lung bacterial clearance similar to male mice. There were differences in tumor necrosis factor-α secretion in male and female alveolar macrophages after P. aeruginosa infection. Finally, injection of male or oophorectomized wild-type female mice with estrogen restored lung bacterial clearance and prevented mortality. Our model of TBI followed by P. aeruginosa pneumonia is among the first to reveal sex dimorphism in secondary, long-term TBI complications.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Estradiol/uso terapéutico , Pulmón/efectos de los fármacos , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Caracteres Sexuales , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/mortalidad , Línea Celular , Estradiol/farmacología , Femenino , Pulmón/metabolismo , Pulmón/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/mortalidad , Infecciones por Pseudomonas/mortalidad , Pseudomonas aeruginosa/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA