Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233163

RESUMEN

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía/metabolismo , NADP Transhidrogenasas/metabolismo , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Línea Celular , Estudios de Cohortes , AMP Cíclico/metabolismo , Daño del ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Predisposición Genética a la Enfermedad , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanosomas/efectos de los fármacos , Melanosomas/metabolismo , Melanosomas/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , NADP Transhidrogenasas/antagonistas & inhibidores , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/genética , Ubiquitina/metabolismo , Pez Cebra
2.
Analyst ; 149(5): 1436-1446, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38050860

RESUMEN

Pharmaceutical development of solid-state formulations requires testing active pharmaceutical ingredients (API) and excipients for uniformity and stability. Solid-state properties such as component distribution and grain size are crucial factors that influence the dissolution profile, which greatly affect drug efficacy and toxicity, and can only be analyzed spatially by chemical imaging (CI) techniques. Current CI techniques such as near infrared microscopy and confocal Raman spectroscopy are capable of high chemical and spatial resolution but cannot achieve the measurement speeds necessary for integration into the pharmaceutical production and quality assurance processes. To fill this gap, we demonstrate fast chemical imaging by epi-detected sparse spectral sampling stimulated Raman scattering to quantify API and excipient degradation and distribution.


Asunto(s)
Microscopía , Microscopía Óptica no Lineal , Comprimidos/análisis , Comprimidos/química , Espectrometría Raman/métodos , Excipientes/análisis , Excipientes/química
3.
Cytometry A ; 99(11): 1067-1078, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34328262

RESUMEN

Neurological disorders affect hundreds of millions of people around the world, are often life-threatening, untreatable, and can result in debilitating symptoms. The high prevalence of these disorders, which feature biochemical or structural abnormalities in neuronal systems, has spurned innovations in both rapid and early detection to assist in the selection of appropriate treatment strategies to improve the patients' quality of life. Plasmonic nanoparticles (PNPs), a versatile and promising class of nanomaterials, are widely utilized in numerous imaging techniques, drug delivery systems, and biomarker detection methods. Recently, PNP-based nanoprobes have attracted considerable attention for the early diagnosis of neurological disorders. Gold nanoparticles (AuNPs), with high local surface plasmon resonance (LSPR) signals, have been particularly well exploited as probes for dynamic biomarker detection, with quantification sensitivity demonstrated down to the single-molecule level. In this review, we will discuss the possibilities of PNPs in the methodological development for rapid neurological disease identification. In addition, we will also describe a new digital cytometry method that combines dark-field imaging and machine learning for precise biomarker enumeration on single cells. The aim of this review is to attract researchers working on the future development of new plasmonic nanoprobe-based strategies for the diagnosis of neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Nanopartículas del Metal , Biomarcadores , Oro , Humanos , Calidad de Vida , Resonancia por Plasmón de Superficie
4.
Analyst ; 146(21): 6379-6393, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34596653

RESUMEN

Clinical medicine continues to seek novel rapid non-invasive tools capable of providing greater insight into disease progression and management. Raman scattering based technologies constitute a set of tools under continuing development to address outstanding challenges spanning diagnostic medicine, surgical guidance, therapeutic monitoring, and histopathology. Here we review the mechanisms and clinical applications of Raman scattering, specifically focusing on high-speed imaging methods that can provide spatial context for translational biomedical applications.


Asunto(s)
Espectrometría Raman
5.
Bioessays ; 41(6): e1900004, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094000

RESUMEN

Here, a streamlined, scalable, laboratory approach is discussed that enables medium-to-large dataset analysis. The presented approach combines data management, artificial intelligence, containerization, cluster orchestration, and quality control in a unified analytic pipeline. The unique combination of these individual building blocks creates a new and powerful analysis approach that can readily be applied to medium-to-large datasets by researchers to accelerate the pace of research. The proposed framework is applied to a project that counts the number of plasmonic nanoparticles bound to peripheral blood mononuclear cells in dark-field microscopy images. By using the techniques presented in this article, the images are automatically processed overnight, without user interaction, streamlining the path from experiment to conclusions.


Asunto(s)
Análisis de Datos , Aprendizaje Profundo , Procesamiento Automatizado de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Sistemas de Administración de Bases de Datos , Oro/análisis , Humanos , Leucocitos Mononucleares/citología , Nanopartículas del Metal/análisis , Microscopía/métodos
6.
Anesthesiology ; 133(1): 185-194, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31977524

RESUMEN

BACKGROUND: Postoperative pain caused by trauma to nerves and tissue around the surgical site is a major problem. Perioperative steps to reduce postoperative pain include local anesthetics and opioids, the latter of which are addictive and have contributed to the opioid epidemic. Cryoneurolysis is a nonopioid and long-lasting treatment for reducing postoperative pain. However, current methods of cryoneurolysis are invasive, technically demanding, and are not tissue-selective. This project aims to determine whether ice slurry can be used as a novel, injectable, drug-free, and tissue-selective method of cryoneurolysis and resulting analgesia. METHODS: The authors developed an injectable and selective method of cryoneurolysis using biocompatible ice slurry, using rat sciatic nerve to investigate the effect of slurry injection on the structure and function of the nerve. Sixty-two naïve, male Sprague-Dawley rats were used in this study. Advanced Coherent anti-Stokes Raman Scattering microscopy, light, and fluorescent microscopy imaging were used at baseline and at various time points after treatment for evaluation and quantification of myelin sheath and axon structural integrity. Validated motor and sensory testing were used for evaluating the sciatic nerve function in response to ice slurry treatment. RESULTS: Ice slurry injection can selectively target the rat sciatic nerve. Being injectable, it can infiltrate around the nerve. The authors demonstrate that a single injection is safe and selective for reversibly disrupting the myelin sheaths and axon density, with complete structural recovery by day 112. This leads to decreased nocifensive function for up to 60 days, with complete recovery by day 112. There was up to median [interquartile range]: 68% [60 to 94%] reduction in mechanical pain response after treatment. CONCLUSIONS: Ice slurry injection selectively targets the rat sciatic nerve, causing no damage to surrounding tissue. Injection of ice slurry around the rat sciatic nerve induced decreased nociceptive response from the baseline through neural selective cryoneurolysis.


Asunto(s)
Crioterapia/métodos , Hielo , Bloqueo Nervioso/métodos , Nervio Ciático , Analgesia , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Inyecciones , Masculino , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Nocicepción , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Nervio Ciático/ultraestructura , Caminata
8.
Analyst ; 141(2): 476-503, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26539569

RESUMEN

Despite significant effort, cancer still remains a leading cause of death worldwide. In order to reduce its burden, the development and improvement of noninvasive strategies for early detection and diagnosis of cancer are urgently needed. Raman spectroscopy, an optical technique that relies on inelastic light scattering arising from molecular vibrations, is one such strategy, as it can noninvasively probe cancerous markers using only endogenous contrast. In this review, spontaneous, coherent and surface enhanced Raman spectroscopies and imaging, as well as the fundamental principles governing the successful use of these techniques, are discussed. Methods for spectral data analysis are also highlighted. Utilization of the discussed Raman techniques for the detection and diagnosis of cancer in vitro, ex vivo and in vivo is described. The review concludes with a discussion of the future directions of Raman technologies, with particular emphasis on their clinical translation.


Asunto(s)
Neoplasias/diagnóstico , Espectrometría Raman/métodos , Animales , Humanos
9.
Angew Chem Int Ed Engl ; 54(29): 8340-62, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26084034

RESUMEN

Oxygen monitoring has been a topic of exhaustive study given its central role in the biochemistry of life. The ability to quantify the physiological distribution and real-time dynamics of oxygen from sub-cellular to macroscopic levels is required to fully understand the mechanisms associated with both normal physiology and disease states. This Review will present the most significant recent advances in the development of oxygen-sensing materials and techniques, including polarographic, nuclear medicine, magnetic resonance, and optical approaches, that can be applied specifically for the real-time monitoring of oxygen dynamics in cellular and tissue environments. As some of the most exciting recent advances in synthetic methods and biomedical applications have been in the field of optical oxygen sensors, a major focus will be on the development of these toolkits.


Asunto(s)
Técnicas Biosensibles/métodos , Oxígeno/análisis , Animales , Técnicas Biosensibles/instrumentación , Técnicas de Diagnóstico por Radioisótopo/instrumentación , Hemoglobinas/análisis , Humanos , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Polarografía/instrumentación , Polarografía/métodos
10.
Angew Chem Int Ed Engl ; 54(49): 14728-31, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26510549

RESUMEN

A new group of "clickable" and brightly emissive metalloporphyrins has been developed for the visualization of oxygenation under ambient light with the naked eye. These alkynyl-terminated compounds permit the rapid and facile synthesis of oxygen-sensing dendrimers through azide-alkyne click chemistry. With absorption maxima overlapping with the wavelengths of common commercial laser sources, they are readily applicable to biomedical imaging of tissue oxygenation. An efficient synthetic methodology, featuring the stable trimethylacetyl (pivaloyl) protecting group, is described for their preparation. A paint-on liquid bandage containing a new, click-synthesized porphyrin dendrimer has been used to map oxygenation across an ex vivo porcine skin burn model.


Asunto(s)
Química Clic , Luz , Oxígeno/química , Porfirinas/química
11.
Angew Chem Int Ed Engl ; 53(14): 3671-4, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24590700

RESUMEN

Hypoxia is an important contributing factor to the development of drug-resistant cancer, yet few nonperturbative tools exist for studying oxygenation in tissues. While progress has been made in the development of chemical probes for optical oxygen mapping, penetration of such molecules into poorly perfused or avascular tumor regions remains problematic. A click-assembled oxygen-sensing (CAOS) nanoconjugate is reported and its properties demonstrated in an in vitro 3D spheroid cancer model. The synthesis relies on the sequential click-based ligation of poly(amidoamine)-like subunits for rapid assembly. Near-infrared confocal phosphorescence microscopy was used to demonstrate the ability of the CAOS nanoconjugates to penetrate hundreds of micrometers into spheroids within hours and to show their sensitivity to oxygen changes throughout the nodule. This proof-of-concept study demonstrates a modular approach that is readily extensible to a wide variety of oxygen and cellular sensors for depth-resolved imaging in tissue and tissue models.


Asunto(s)
Microscopía Confocal/métodos , Nanoconjugados/química , Nanotecnología/métodos , Neoplasias/diagnóstico por imagen , Antineoplásicos/uso terapéutico , Química Clic , Humanos , Neoplasias/tratamiento farmacológico , Cintigrafía
12.
J Control Release ; 367: 864-876, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346503

RESUMEN

Generic drugs are essential for affordable medicine and improving accessibility to treatments. Bioequivalence (BE) is typically demonstrated by assessing a generic product's pharmacokinetics (PK) relative to a reference-listed drug (RLD). Accurately estimating cutaneous PK (cPK) at or near the site of action can be challenging for locally acting topical products. Certain cPK approaches are available for assessing local bioavailability (BA) in the skin. Stimulated Raman scattering (SRS) microscopy has unique capabilities enabling continuous, high spatial and temporal resolution and quantitative imaging of drugs within the skin. In this paper, we developed an approach based on SRS and a polymer-based standard reference for the evaluation of topical product BA and BE in human skin ex vivo. BE assessment of tazarotene-containing formulations was achieved using cPK parameters obtained within different skin microstructures. The establishment of BE between the RLD and an approved generic product was successfully demonstrated. Interestingly, within the constraints of the current study design the results suggest similar BA between the tested gel formulation and the reference cream formulation, despite the differences in the formulation/dosage form. Another formulation containing polyethylene glycol as the vehicle was demonstrated to be not bioequivalent to the RLD. Compared to using the SRS approach without a standard reference, the developed approach enabled more consistent and reproducible results, which is crucial in BE assessment. The abundant information from the developed approach can help to systematically identify key areas of study design that will enable a better comparison of topical products and support an assessment of BE.


Asunto(s)
Microscopía Óptica no Lineal , Piel , Humanos , Equivalencia Terapéutica , Piel/metabolismo , Disponibilidad Biológica , Administración Cutánea , Medicamentos Genéricos/química
13.
Sens Diagn ; 3(6): 1014-1019, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38882471

RESUMEN

Integration of physiological sensing modalities within tissue and organ perfusion systems is becoming a steadily expanding field of research, aimed at achieving technological breakthrough innovations that will expand the sites and clinical settings at which such systems can be used. This is becoming possible in part due to the advancement of user-friendly optical sensors in recent years, which rely both on synthetic, luminescent sensor molecules and inexpensive, low-power electronic components for device engineering. In this article we report a novel approach towards enabling automated, continuous monitoring of oxygenation during ex vivo organ perfusion, by combining versatile flow cell components and low-power, programmable electronic readout devices. The sensing element comprises a 3D printed, miniature flow cell with tubing connectors and an affixed oxygen-sensing thin film material containing in-house developed, brightly-emitting metalloporphyrin phosphor molecules embedded within a polymer matrix. Proof-of-concept validation of this technology is demonstrated through integration within the tubing circuit of a transportable medical device for hypothermic oxygenated machine perfusion of extracted kidneys as a model for organs to be preserved as transplants.

14.
J Invest Dermatol ; 143(8): 1430-1438.e4, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36804151

RESUMEN

Noninvasive quantification of dermal diseases aids efficacy studies and paves the way for broader enrollment in clinical studies across varied demographics. Related to atopic dermatitis, accurate quantification of the onset and resolution of inflammatory flare ups in the skin remains challenging because the commonly used macroscale cues do not necessarily represent the underlying inflammation at the cellular level. Although atopic dermatitis affects over 10% of Americans, the genetic underpinnings and cellular-level phenomena causing the physical manifestation of the disease require more clarity. Current gold standards of quantification are often invasive, requiring biopsies followed by laboratory analysis. This represents a gap in our ability to diagnose and study skin inflammatory disease as well as develop improved topical therapeutic treatments. This need can be addressed through noninvasive imaging methods and the use of modern quantitative approaches to streamline the generation of relevant insights. This work reports the noninvasive image-based quantification of inflammation in an atopic dermatitis mouse model on the basis of cellular-level deep learning analysis of coherent anti-Stokes Raman scattering and stimulated Raman scattering imaging. This quantification method allows for timepoint-specific disease scores using morphological and physiological measurements. The outcomes we show set the stage for applying this workflow to future clinical studies.


Asunto(s)
Aprendizaje Profundo , Dermatitis Atópica , Animales , Ratones , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Piel/diagnóstico por imagen , Piel/patología , Administración Tópica , Inflamación/tratamiento farmacológico
15.
ACS Meas Sci Au ; 3(4): 269-276, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37600461

RESUMEN

In this article, we present a toolset to fully leverage a previously developed transcutaneous oxygenation monitor (TCOM) wearable technology to accurately measure skin oxygenation values. We describe numerical models and experimental characterization techniques that allow for the extraction of precise tissue oxygenation measurements. The numerical model is based on an inverse boundary problem of the parabolic equation with Dirichlet boundary conditions. To validate this model and characterize the diffusion of oxygen through the oxygen sensing materials, we designed a series of control/calibration experiments modeled after the device's clinical application using oxygenation values in the physiological range expected for healthy tissue. Our results demonstrate that it is possible to obtain accurate tissue pO2 measurements without the need for long equilibration times with a small wearable device.

16.
J Invest Dermatol ; 143(1): 134-141.e1, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985498

RESUMEN

Cutaneous pain is a common symptom of skin disease, and available therapies are inadequate. We developed a neural selective and injectable method of cryoneurolysis with ice slurry, which leads to a long-lasting decrease in mechanical pain. The aim of this study is to determine whether slurry injection reduces cutaneous pain without inducing the side effects associated with conventional cryoneurolysis. Using the rat sciatic nerve, we examined the effects of slurry on nerve structure and function in comparison with the effects of a Food and Drug Administration‒approved cryoneurolysis device (Iovera). Coherent anti-Stokes Raman scattering microscopy and immunofluorescence staining were used to investigate histological effects on the sciatic nerve and on downstream cutaneous nerve fibers. Complete Freund's Adjuvant model of cutaneous pain was used to study the effect of the slurry on reducing pain. Structural changes in myelin induced by slurry were comparable with those induced by Iovera, which uses much colder temperatures. Compared with that of Iovera, the decrease in mechanical pain due to slurry was less profound but lasted longer without signs of dysesthesia. Slurry did not cause a reduction of epidermal nerve fibers or a change in thermal pain sensitivity. Slurry-treated rats showed reduced cutaneous mechanical pain in response to Complete Freund's Adjuvant. Slurry injection can be used to successfully reduce cutaneous pain without causing dysesthesia.


Asunto(s)
Hielo , Enfermedades de la Piel , Ratas , Animales , Adyuvante de Freund/farmacología , Ratas Sprague-Dawley , Parestesia , Dolor/etiología
17.
Sci Rep ; 13(1): 14782, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679415

RESUMEN

Oxygenation is a crucial indicator of tissue viability and function. Oxygen tension ([Formula: see text]), i.e. the amount of molecular oxygen present in the tissue is a direct result of supply (perfusion) and consumption. Thus, measurement of [Formula: see text] is an effective method to monitor tissue viability. However, tissue oximetry sensors commonly used in clinical practice instead rely on measuring oxygen saturation ([Formula: see text]), largely due to the lack of reliable, affordable [Formula: see text] sensing solutions. To address this issue we present a proof-of-concept design and validation of a low-cost, lifetime-based oxygen sensing fiber. The sensor consists of readily-available off-the shelf components such as a microcontroller, a light-emitting diode (LED), an avalanche photodiode (APD), a temperature sensor, as well as a bright in-house developed porphyrin molecule. The device was calibrated using a benchtop setup and evaluated in three in vivo animal models. Our findings show that the new device design in combination with the bright porphyrin has the potential to be a useful and accurate tool for measuring [Formula: see text] in tissue, while also highlighting some of the limitations and challenges of oxygen measurements in this context.


Asunto(s)
Tecnología de Fibra Óptica , Porfirinas , Animales , Análisis de los Gases de la Sangre , Oximetría , Oxígeno
18.
Opt Express ; 20(14): 15253-62, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22772223

RESUMEN

We present a new method for high-resolution, three-dimensional fluorescence imaging. In contrast to beam-scanning confocal microscopy, where the laser focus must be scanned both laterally and axially to collect a volume, we obtain depth information without the necessity of depth scanning. In this method, the emitted fluorescence is collected in the backward direction and is sent through a phase plate that encodes the depth information into the phase of a spectrally resolved interference pattern. We demonstrate that decoding this phase information allows for depth localization accuracy better than 4 µm over a 500 µm depth-of-field. In a high numerical aperture configuration with a much smaller depth of field, a localization accuracy of tens of nanometers can be achieved. This approach is ideally suited for miniature endoscopes, where space limitations at the endoscope tip render depth scanning difficult. We illustrate the potential for 3D visualization of complex biological samples by constructing a three-dimensional volume of the microvasculature of ex vivo murine heart tissue from a single 2D scan.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Microscopía de Interferencia/métodos , Animales , Corazón/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microvasos/anatomía & histología , Relación Señal-Ruido
19.
Mol Pharm ; 9(11): 3171-82, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22946843

RESUMEN

Hypoxia and acidosis are widely recognized as major contributors to the development of treatment resistant cancer. For patients with disseminated metastatic lesions, such as most women with ovarian cancer (OvCa), the progression to treatment resistant disease is almost always fatal. Numerous therapeutic approaches have been developed to eliminate treatment resistant carcinoma, including novel biologic, chemo, radiation, and photodynamic therapy (PDT) regimens. Recently, PDT using the cationic photosensitizer EtNBS was found to be highly effective against therapeutically unresponsive hypoxic and acidic OvCa cellular populations in vitro. To optimize this treatment regimen, we developed a tiered, high-content, image-based screening approach utilizing a biologically relevant OvCa 3D culture model to investigate a small library of side-chain modified EtNBS derivatives. The uptake, localization, and photocytotoxicity of these compounds on both the cellular and nodular levels were observed to be largely mediated by their respective ethyl side chain chemical alterations. In particular, EtNBS and its hydroxyl-terminated derivative (EtNBS-OH) were found to have similar pharmacological parameters, such as their nodular localization patterns and uptake kinetics. Interestingly, these two molecules were found to induce dramatically different therapeutic outcomes: EtNBS was found to be more effective in killing the hypoxic, nodule core cells with superior selectivity, while EtNBS-OH was observed to trigger widespread structural degradation of nodules. This breakdown of the tumor architecture can improve the therapeutic outcome and is known to synergistically enhance the antitumor effects of front-line chemotherapeutic regimens. These results, which would not have been predicted or observed using traditional monolayer or in vivo animal screening techniques, demonstrate the powerful capabilities of 3D in vitro screening approaches for the selection and optimization of therapeutic agents for the targeted destruction of specific cellular subpopulations.


Asunto(s)
Hipoxia/tratamiento farmacológico , Imagenología Tridimensional , Neoplasias Ováricas/tratamiento farmacológico , Fotoquimioterapia , Tiazinas/farmacología , Microambiente Tumoral/efectos de los fármacos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Neoplasias Ováricas/patología , Células Tumorales Cultivadas
20.
Isr J Chem ; 52(8-9): 728-744, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23316088

RESUMEN

A major challenge in creating and optimizing therapeutics in the fight against cancer is visualizing and understanding the microscale spatiotemporal treatment response dynamics that occur in patients. This is especially true for photodynamic therapy (PDT), where therapeutic optimization relies on understanding the interplay between factors such as photosensitizer localization and uptake, in addition to light dose and delivery rate. In vitro 3D culture systems that recapitulate many of the biological features of human disease are powerful platforms for carrying out detailed studies on PDT response and resistance. Current techniques for visualizing these models, however, often lack accuracy due to the perturbative nature of the sample preparation, with light attenuation complicating the study of intact models. Optical coherence tomography (OCT) is an ideal method for the long-term, non-perturbative study of in vitro models and their response to PDT. Monitoring the response of 3D models to PDT by time-lapse OCT methods promises to provide new perspectives and open the way to cancer treatment methodologies that can be translated towards the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA