Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(3): 1721-1729, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33449613

RESUMEN

Due to high viscosity, bitumen extracted from the Alberta oil sands is diluted with natural gas condensates to form diluted bitumen (dilbit) to facilitate transport through pipelines. Dilbit that is spilled into or near a waterbody is subject to environmental weathering processes such as evaporation and interaction with sediments. This is the first study that assessed the toxicity of weathered sediment-bound dilbit (WSD) to fish early life stages. Exposure of zebrafish (Danio rerio) embryos to water-soluble fractions (WSFs) or water-accommodated fractions (WAFs) of WSD from 30 min to 120 h postfertilization resulted in pericardial edema, yolk sac edema, and incidences of uninflated swim bladder. The presence of oil-mineral aggregates (OMAs) in the WAFs greatly increased toxicity, despite all fractions having similar concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs). There were greater cyp1a mRNA abundances in larvae exposed to WAFs, suggesting that there were differences in bioavailability of PAHs between fractions. However, there was little evidence that embryotoxicity was caused by oxidative stress. Results suggest that evaporation and sediment interaction do not completely attenuate toxicity of dilbit to zebrafish early life stages, and OMAs in exposures exacerbate toxicity.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Alberta , Animales , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
2.
Aquat Toxicol ; 228: 105630, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32971354

RESUMEN

Bitumen mined in the oil sands region of Northern Alberta, Canada, is diluted with natural gas condensates to form dilbit, which is transported through pipelines. Sections of these pipelines come close to freshwater ecosystems. If dilbit is spilled into or near an aquatic environment, environmental weathering processes, such as evaporation and sediment interaction, influence the fate and toxicity of dilbit to aquatic organisms. To date, most studies of the effects of dilbit on the health of aquatic organisms have not considered weathering processes. Thus, the goal of this study was to assess the toxicity of weathered sediment-bound dilbit (WSD) to an aquatic organism. Adult freshwater amphipods (Hyalella azteca) were exposed directly to WSD or the water-soluble fraction (WSF) of WSD. Direct exposure to WSD resulted in oil-mineral aggregates adhering to the appendages and gas exchange structures of amphipods, causing acute lethality. After a 10-min exposure to WSD, amphipods consumed half as much oxygen and their appendage movement was impaired. Exposure to the WSF, which contained a total PAH concentration of 1.08 µg/L, did not result in acute lethality, or significantly affect respiration, activity or acetylcholinesterase activity. Results of the present study indicate that physical interaction with oil-mineral aggregates after a spill of dilbit is a threat to benthic invertebrates, whereas the WSF does not cause acute adverse effects. As the transport of dilbit through pipelines increases in North America, studies must incorporate environmental weathering processes when determining the effects of dilbit on aquatic organisms.


Asunto(s)
Anfípodos/efectos de los fármacos , Agua Dulce , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Alberta , Animales , Organismos Acuáticos/efectos de los fármacos , Ecosistema , Consumo de Oxígeno/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Solubilidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA