Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vis Exp ; (208)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39007605

RESUMEN

The meningeal lymphatic vessels (MLVs) play an important role in the removal of toxins from the brain. The development of innovative technologies for the stimulation of MLV functions is a promising direction in the progress of the treatment of various brain diseases associated with MLV abnormalities, including Alzheimer's and Parkinson's diseases, brain tumors, traumatic brain injuries, and intracranial hemorrhages. Sleep is a natural state when the brain's drainage processes are most active. Therefore, stimulation of the brain's drainage and MLVs during sleep may have the most pronounced therapeutic effects. However, such commercial technologies do not currently exist. This study presents a new portable technology of transcranial photobiomodulation (tPBM) under electroencephalographic (EEG) control of sleep designed to photo-stimulate removal of toxins (e.g., soluble amyloid beta (Aß)) from the brain of aged BALB/c mice with the ability to compare the therapeutic effectiveness of different optical resources. The technology can be used in the natural condition of a home cage without anesthesia, maintaining the motor activity of mice. These data open up new prospects for developing non-invasive and clinically promising photo-technologies for the correction of age-related changes in the MLV functions and brain's drainage processes and for effectively cleansing brain tissues from metabolites and toxins. This technology is intended both for preclinical studies of the functions of the sleeping brain and for developing clinically relevant treatments for sleep-related brain diseases.


Asunto(s)
Encéfalo , Electroencefalografía , Ratones Endogámicos BALB C , Sueño , Animales , Ratones , Encéfalo/efectos de la radiación , Electroencefalografía/métodos , Sueño/fisiología , Sueño/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Péptidos beta-Amiloides/metabolismo , Vasos Linfáticos/efectos de la radiación , Vasos Linfáticos/fisiología
2.
Biomedicines ; 12(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397864

RESUMEN

There is an association between sleep quality and glioma-specific outcomes, including survival. The critical role of sleep in survival among subjects with glioma may be due to sleep-induced activation of brain drainage (BD), that is dramatically suppressed in subjects with glioma. Emerging evidence demonstrates that photobiomodulation (PBM) is an effective technology for both the stimulation of BD and as an add-on therapy for glioma. Emerging evidence suggests that PBM during sleep stimulates BD more strongly than when awake. In this study on male Wistar rats, we clearly demonstrate that the PBM course during sleep vs. when awake more effectively suppresses glioma growth and increases survival compared with the control. The study of the mechanisms of this phenomenon revealed stronger effects of the PBM course in sleeping vs. awake rats on the stimulation of BD and an immune response against glioma, including an increase in the number of CD8+ in glioma cells, activation of apoptosis, and blockage of the proliferation of glioma cells. Our new technology for sleep-phototherapy opens a new strategy to improve the quality of medical care for patients with brain cancer, using promising smart-sleep and non-invasive approaches of glioma treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA