Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(6): 066801, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491176

RESUMEN

We created hexagonal rings on a semiconductor surface by atom manipulation in a scanning tunneling microscope (STM). Our measurements reveal the generic level structure of a quantum ring, including its single ground state and doubly degenerate excited states. The ring shape leads to a periodic potential modulation and thereby a perturbation of the level structure that can be understood in analogy to band gap formation in a one-dimensional periodic potential. The modulation can be enhanced or inverted by further adding or removing atoms with the STM tip. Our results demonstrate the possibility of designing and controlling electron dynamics in a tunable periodic potential, holding promise for the construction of two-dimensional artificial lattices on a semiconductor surface.

2.
Nano Lett ; 18(3): 1849-1855, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29415536

RESUMEN

A two-dimensional (2D) heterobilayer system consisting of MoS2 on WSe2, deposited on epitaxial graphene, is studied by scanning tunneling microscopy and spectroscopy at temperatures of 5 and 80 K. A moiré pattern is observed, arising from lattice mismatch of 3.7% between the MoS2 and WSe2. Significant energy shifts are observed in tunneling spectra observed at the maxima of the moiré corrugation, as compared with spectra obtained at corrugation minima, consistent with prior work. Furthermore, at the minima of the moiré corrugation, sharp peaks in the spectra at energies near the band edges are observed for spectra acquired at 5 K. The peaks correspond to discrete states that are confined within the moiré unit cells. Conductance mapping is employed to reveal the detailed structure of the wave functions of the states. For measurements at 80 K, the sharp peaks in the spectra are absent, and conductance maps of the band edges reveal little structure.

3.
Phys Rev Lett ; 115(7): 076803, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26317740

RESUMEN

Quantum-dot molecules were constructed on a semiconductor surface using atom manipulation by scanning tunneling microscopy (STM) at 5 K. The molecules consist of several coupled quantum dots, each of which comprises a chain of charged adatoms that electrostatically confines intrinsic surface-state electrons. The coupling takes place across tunnel barriers created reversibly using the STM tip. These barriers have an invariant, reproducible atomic structure and can be positioned-and repeatedly repositioned-to create a series of reconfigurable quantum-dot molecules with atomic precision.

4.
Nano Lett ; 11(6): 2486-9, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21591678

RESUMEN

Scanning tunneling microscopy (STM) at 5 K reveals that native atoms in the surface layer of a semiconductor crystal become bistable in vertical height when a nanostructure is assembled nearby. The binary switching of surface atoms, driven by the STM tip, changes their charge state. Coupling is facilitated by assembling adatom chains, allowing us to explore the emergence of complex multiple switching. Density-functional theory calculations rationalize the observations and a lattice-gas model predicts the cooperative behavior from first principles.


Asunto(s)
Nanoestructuras/química , Microscopía de Túnel de Rastreo , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
5.
Nano Lett ; 9(8): 2996-3000, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19583246

RESUMEN

The biconformational switching of single cyclooctadiene molecules chemisorbed on a Si(001) surface was explored by quantum chemical and quantum dynamical calculations and low-temperature scanning tunneling microscopy experiments. The calculations rationalize the experimentally observed switching driven by inelastic electron tunneling (IET) at 5 K. At higher temperatures, they predict a controllable crossover behavior between IET-driven and thermally activated switching, which is fully confirmed by experiment.

6.
ACS Nano ; 14(6): 7564-7573, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32496750

RESUMEN

It has recently been shown that quantum-confined states can appear in epitaxially grown van der Waals material heterobilayers without a rotational misalignment (θ = 0°), associated with flat bands in the Brillouin zone of the moiré pattern formed due to the lattice mismatch of the two layers. Peaks in the local density of states and confinement in a MoS2/WSe2 system was qualitatively described only considering local stacking arrangements, which cause band edge energies to vary spatially. In this work, we report the presence of large in-plane strain variation across the moiré unit cell of a θ = 0° MoS2/WSe2 heterobilayer and show that inclusion of strain variation and out-of-plane displacement in density functional theory calculations greatly improves their agreement with the experimental data. We further explore the role of a twist angle by showing experimental data for a twisted MoS2/WSe2 heterobilayer structure with a twist angle of θ = 15°, which exhibits a moiré pattern but no confinement.

7.
ACS Nano ; 12(2): 965-975, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29360349

RESUMEN

Atomically thin transition metal dichalcogenides (TMDs) are of interest for next-generation electronics and optoelectronics. Here, we demonstrate device-ready synthetic tungsten diselenide (WSe2) via metal-organic chemical vapor deposition and provide key insights into the phenomena that control the properties of large-area, epitaxial TMDs. When epitaxy is achieved, the sapphire surface reconstructs, leading to strong 2D/3D (i.e., TMD/substrate) interactions that impact carrier transport. Furthermore, we demonstrate that substrate step edges are a major source of carrier doping and scattering. Even with 2D/3D coupling, transistors utilizing transfer-free epitaxial WSe2/sapphire exhibit ambipolar behavior with excellent on/off ratios (∼107), high current density (1-10 µA·µm-1), and good field-effect transistor mobility (∼30 cm2·V-1·s-1) at room temperature. This work establishes that realization of electronic-grade epitaxial TMDs must consider the impact of the TMD precursors, substrate, and the 2D/3D interface as leading factors in electronic performance.

8.
J Phys Condens Matter ; 29(36): 364001, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28677593

RESUMEN

A scanning tunnelling microscope (STM) operated at 5 K was used to study dysprosium biphthalocyanine (DyPc2) molecules adsorbed on the inert III-V semiconductor surface InAs(1 1 1)A. Orbital imaging and scanning tunnelling spectroscopy measurements reveal that the molecular electronic structure remains largely unperturbed, indicating a weak molecule-surface binding. The molecule adsorbs at the In vacancy site of the (2 × 2)-reconstructed surface and is highly sensitive to current-induced excitations leading to random rotational fluctuations. Owing to the weak surface binding, individual molecules can be precisely repositioned and arranged by the STM tip via attractive tip-molecule interaction. In this way, DyPc2 dimers of well-defined internal structure can be assembled which exist in two conformations of equivalent appearance. A binary switching between these two conformers can be induced by injecting electrons into one of the two molecules. The conformational change of the dimer proceeds via a concerted molecular rotation and minor lateral displacement. The synchronised switching observed here is attributed to steric interactions between the two molecules constituting the dimer.

9.
J Phys Condens Matter ; 27(25): 255008, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26045477

RESUMEN

We study the light emission from a Ag(111) surface when the bias voltage on a scanning tunneling microscope (STM) junction is ramped into the field emission regime. Above the vacuum level, scanning tunneling spectroscopy (STS) shows a series of well defined resonances associated with the image states of the surface, which are Stark shifted due to the electric field provided by the STM tip. We present photon-energy resolved measurements that unambiguously show that the mechanism for light emission is the radiative decay of surface localized plasmons excited by the electrons that tunnel inelastically into the Stark shifted image states. Our work illustrates the effect of the tip radius both in the STS spectrum and the light emission maps by repeating the experiment with different tips.

10.
Nat Nanotechnol ; 9(7): 505-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24974937

RESUMEN

Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.


Asunto(s)
Puntos Cuánticos/química , Semiconductores , Tamaño de la Partícula , Puntos Cuánticos/ultraestructura
11.
ACS Nano ; 6(5): 4190-5, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22494431

RESUMEN

Bistable organic molecules were deposited on a weakly binding III-V semiconductor surface and then pinned into place using individual native adatoms. These pinning atoms, positioned by atomically precise manipulation techniques in a cryogenic scanning tunneling microscope (STM) at 5 K, stabilize the π-conjugated molecule against rotation excited by the tunneling electrons. The pinning allows triggering of the molecule's intrinsic switching mechanism (a hydrogen transfer reaction) by the STM tunnel current. Density-functional theory calculations reveal that the energetics of the switching process is virtually unaffected by both the surface and the pinning atoms. Hence, we have demonstrated that individual molecules with predictable, predefined functions can be stabilized and assembled on semiconductor templates.

12.
Phys Rev Lett ; 103(9): 096104, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19792811

RESUMEN

The vertical manipulation of native adatoms on a III-V semiconductor surface was achieved in a scanning tunneling microscope at 5 K. Reversible repositioning of individual In atoms on InAs(111)A allows us to construct one-atom-wide In chains. Tunneling spectroscopy reveals that these chains host quantum states deriving from an adatom-induced electronic state and substantial substrate-mediated coupling. Our results show that the combined approach of atom manipulation and local spectroscopy is capable to explore atomic-scale quantum structures on semiconductor platform.

13.
Nano Lett ; 8(9): 2712-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18671440

RESUMEN

We present a joint experimental-theoretical study of the one-dimensional band of excited electronic states with sp character localized on Cu nanowires supported on a Cu(111) surface. Energy dispersion and lifetime of these states have been obtained, allowing the determination of the mean distance traveled by an excited electron along the nanowire before it escapes into the substrate. We show that a Cu nanowire supported on a Cu(111) surface can guide a one-dimensional electron flux over a short distance and thus can be considered as a possible component for nanoelectronics devices.

14.
Phys Rev Lett ; 98(14): 146804, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17501302

RESUMEN

Close-packed Co-Cu chains of various length and composition were assembled from single Co and Cu atoms on Cu(111) by atom manipulation in a low-temperature scanning tunneling microscope. Local spectroscopy reveals significant electronic Co-Cu coupling leading to confined quantum states delocalized along the heteroatomic chain. Composite Co-Cu chains provide a model case in which the quantum state of an atomic-scale host structure can be tuned by the controlled incorporation of foreign atoms.

15.
Phys Rev Lett ; 95(13): 136801, 2005 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-16197162

RESUMEN

Low-temperature scanning tunneling microscopy and spectroscopy at 7 K was used to assemble and characterize native adatom islands of successive size on the Cu(111) surface. Starting from the single adatom we observe the formation of a series of quantum states which merge into the well known two-dimensional Shockley surface state in the limit of large islands. Our experiments reveal a natural physical link between this fundamental surface property and the sp(z) hybrid resonance associated with the single Cu/Cu(111) adatom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA