Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161576

RESUMEN

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
2.
Nucleic Acids Res ; 45(4): 2179-2187, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27986852

RESUMEN

In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucariotas/metabolismo , Modelos Moleculares , Conformación Molecular , Factores Procarióticos de Iniciación/química , Factores Procarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
3.
Proc Natl Acad Sci U S A ; 113(16): E2286-95, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27071098

RESUMEN

In prokaryotic systems, the initiation phase of protein synthesis is governed by the presence of initiation factors that guide the transition of the small ribosomal subunit (30S) from an unlocked preinitiation complex (30S preIC) to a locked initiation complex (30SIC) upon the formation of a correct codon-anticodon interaction in the peptidyl (P) site. Biochemical and structural characterization of GE81112, a translational inhibitor specific for the initiation phase, indicates that the main mechanism of action of this antibiotic is to prevent P-site decoding by stabilizing the anticodon stem loop of the initiator tRNA in a distorted conformation. This distortion stalls initiation in the unlocked 30S preIC state characterized by tighter IF3 binding and a reduced association rate for the 50S subunit. At the structural level we observe that in the presence of GE81112 the h44/h45/h24a interface, which is part of the IF3 binding site and forms ribosomal intersubunit bridges, preferentially adopts a disengaged conformation. Accordingly, the findings reveal that the dynamic equilibrium between the disengaged and engaged conformations of the h44/h45/h24a interface regulates the progression of protein synthesis, acting as a molecular switch that senses and couples the 30S P-site decoding step of translation initiation to the transition from an unlocked preIC to a locked 30SIC state.


Asunto(s)
Antibacterianos/química , Escherichia coli/química , Iniciación de la Cadena Peptídica Traduccional , ARN Bacteriano/química , ARN Ribosómico 16S/química , ARN de Transferencia/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Conformación de Ácido Nucleico
4.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678142

RESUMEN

In Escherichia coli, the mRNA transcribed from the main cold-shock gene cspA is a thermosensor, which at low temperature adopts a conformation particularly suitable for translation in the cold. Unlike cspA, its paralogue cspD is expressed only at 37 °C, is toxic so cannot be hyper-expressed in E. coli and is poorly translated in vitro, especially at low temperature. In this work, chimeric mRNAs consisting of different segments of cspA and cspD were constructed to determine if parts of cspA could confer cold-responsive properties to cspD to improve its expression. The activities of these chimeric mRNAs in translation and in partial steps of translation initiation such as formation of 30S initiation complexes and 50S subunits docking to 30S complexes to yield 70S initiation complexes were analyzed. We show that the 5' untranslated region (5'UTR) of cspA mRNA is sufficient to improve the translation of cspD mRNA at 37 °C whereas both the 5'UTR and the region immediately downstream the cspA mRNA initiation triplet are essential for translation at low temperature. Furthermore, the translational apparatus of cold-stressed cells contains trans-active elements targeting both 5'UTR and downstream regions of cspA mRNA, thereby improving translation of specific chimeric constructs at both 15 and 37 °C.


Asunto(s)
Proteínas Bacterianas/genética , Respuesta al Choque por Frío/fisiología , ARN Mensajero/metabolismo , Regiones no Traducidas 5'/genética , Proteínas Bacterianas/metabolismo , Respuesta al Choque por Frío/genética , Escherichia coli/genética , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología
5.
Nucleic Acids Res ; 43(20): 10015-25, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26464437

RESUMEN

Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC.


Asunto(s)
Cinamatos/química , Cinamatos/farmacología , Higromicina B/análogos & derivados , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/farmacología , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Sitios de Unión , Cinamatos/metabolismo , Cristalografía por Rayos X , Higromicina B/química , Higromicina B/metabolismo , Higromicina B/farmacología , Modelos Moleculares , Peptidil Transferasas/química , Peptidil Transferasas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/enzimología , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
6.
PLoS Biol ; 11(12): e1001731, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24339747

RESUMEN

Regulation of translation initiation is well appropriate to adapt cell growth in response to stress and environmental changes. Many bacterial mRNAs adopt structures in their 5' untranslated regions that modulate the accessibility of the 30S ribosomal subunit. Structured mRNAs interact with the 30S in a two-step process where the docking of a folded mRNA precedes an accommodation step. Here, we used a combination of experimental approaches in vitro (kinetic of mRNA unfolding and binding experiments to analyze mRNA-protein or mRNA-ribosome complexes, toeprinting assays to follow the formation of ribosomal initiation complexes) and in vivo (genetic) to monitor the action of ribosomal protein S1 on the initiation of structured and regulated mRNAs. We demonstrate that r-protein S1 endows the 30S with an RNA chaperone activity that is essential for the docking and the unfolding of structured mRNAs, and for the correct positioning of the initiation codon inside the decoding channel. The first three OB-fold domains of S1 retain all its activities (mRNA and 30S binding, RNA melting activity) on the 30S subunit. S1 is not required for all mRNAs and acts differently on mRNAs according to the signals present at their 5' ends. This work shows that S1 confers to the ribosome dynamic properties to initiate translation of a large set of mRNAs with diverse structural features.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Biosíntesis de Proteínas/fisiología , Pliegue del ARN/fisiología , ARN Mensajero/fisiología , Proteínas Ribosómicas/fisiología , Ribosomas/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología
7.
Nucleic Acids Res ; 42(21): 13039-50, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25389261

RESUMEN

The virF gene of Shigella, responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NSctd), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The 'fast', 'intermediate' and 'slow' H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all 'fast' protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Shigella flexneri/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Huella de ADN , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Shigella flexneri/patogenicidad
8.
Proc Natl Acad Sci U S A ; 110(39): 15656-61, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24029017

RESUMEN

Translation initiation factor 2 (IF2) promotes 30S initiation complex (IC) formation and 50S subunit joining, which produces the 70S IC. The architecture of full-length IF2, determined by small angle X-ray diffraction and cryo electron microscopy, reveals a more extended conformation of IF2 in solution and on the ribosome than in the crystal. The N-terminal domain is only partially visible in the 30S IC, but in the 70S IC, it stabilizes interactions between IF2 and the L7/L12 stalk of the 50S, and on its deletion, proper N-formyl-methionyl(fMet)-tRNA(fMet) positioning and efficient transpeptidation are affected. Accordingly, fast kinetics and single-molecule fluorescence data indicate that the N terminus promotes 70S IC formation by stabilizing the productive sampling of the 50S subunit during 30S IC joining. Together, our data highlight the dynamics of IF2-dependent ribosomal subunit joining and the role played by the N terminus of IF2 in this process.


Asunto(s)
Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas/metabolismo , Thermus thermophilus/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas Mutantes/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Subunidades Ribosómicas Grandes Bacterianas , Subunidades Ribosómicas Pequeñas Bacterianas , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Difracción de Rayos X
9.
Antimicrob Agents Chemother ; 59(8): 4560-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25987631

RESUMEN

A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates of Propionibacterium acnes and, to a lesser extent, against Enterococcus faecalis. Furthermore, NAI003 showed a time- and dose-dependent killing of both a clindamycin-resistant and a clindamycin-sensitive P. acnes isolate. Gel shift experiments indicated that, like the parent compound, NAI003 retained the ability to bind to elongation factors Tu (EF-Tus) derived from Escherichia coli, E. faecalis, or P. acnes, albeit with reduced efficiency. In contrast, EF-Tus derived from the NAI003-insensitive Staphylococcus aureus or Streptococcus pyogenes did not bind this compound. These results were confirmed by in vitro studies using a hybrid translation system, which indicated that NAI003 can inhibit most efficiently protein synthesis driven by the P. acnes EF-Tu. P. acnes mutants resistant to NAI003 were isolated by direct plating. With one exception, all analyzed strains carried mutations in the tuf gene, encoding EF-Tu. Because of its selective effect on P. acnes in comparison to resident skin flora, NAI003 represents a promising candidate for the topical treatment of acne, which has already completed a phase 1 clinical study.


Asunto(s)
Antibacterianos/farmacología , Péptidos Cíclicos/farmacología , Propionibacterium acnes/efectos de los fármacos , Tiazoles/farmacología , Administración Tópica , Clindamicina/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Factor Tu de Elongación Peptídica/metabolismo , Propionibacterium acnes/metabolismo , Piel/microbiología
10.
Appl Microbiol Biotechnol ; 99(3): 1205-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25112226

RESUMEN

A number of studies have been conducted to improve chromophore maturation, folding kinetics, thermostability, and other traits of green fluorescent protein (GFP). However, no specific work aimed at improving the thermostability of the yellow fluorescent protein (YFP) and of the pH-sensitive, yet thermostable color variants of GFP has so far been done. The protein variants reported in this study were improved through rational multiple site-directed mutagenesis of GFP (ASV) by introducing up to ten point mutations including the mutations near and at the chromophore region. Therefore, we report the development and characterization of fast folder and thermo-tolerant green variant (FF-GFP), and a fast folder thermostable yellow fluorescent protein (FFTS-YFP) endowed with remarkably improved thermostability and folding kinetics. We demonstrate that the fluorescence intensity of this yellow variant is not affected by heating at 75 °C. Moreover, we have developed a pH-unresponsive cyan variant AcS-CFP, which has potential use as part of in vivo imaging irrespective of intracellular pH. The combined improved properties make these fluorescent variants ideal tools to study protein expression and function under different pH environments, in mesophiles and thermophiles. Furthermore, coupling of the FFTS-YFP and AcS-CFP could potentially serve as an ideal tool to perform functional analysis of live cells by multicolor labeling.


Asunto(s)
Color , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Pliegue de Proteína , Proteínas Fluorescentes Verdes/química , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Temperatura
11.
Nature ; 455(7211): 416-20, 2008 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-18758445

RESUMEN

Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/enzimología , Thermus thermophilus/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Factor 1 Procariótico de Iniciación/química , Factor 1 Procariótico de Iniciación/genética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 1 Procariótico de Iniciación/ultraestructura , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/ultraestructura , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Thermus thermophilus/genética
12.
Nucleic Acids Res ; 40(20): 10366-74, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22941660

RESUMEN

Furvina®, also denominated G1 (MW 297), is a synthetic nitrovinylfuran [2-bromo-5-(2-bromo-2-nitrovinyl)-furan] antibiotic with a broad antimicrobial spectrum. An ointment (Dermofural®) containing G1 as the only active principle is currently marketed in Cuba and successfully used to treat dermatological infections. Here we describe the molecular target and mechanism of action of G1 in bacteria and demonstrate that in vivo G1 preferentially inhibits protein synthesis over RNA, DNA and cell wall synthesis. Furthermore, we demonstrate that G1 targets the small ribosomal subunit, binds at or near the P-decoding site and inhibits its function interfering with the ribosomal binding of fMet-tRNA during 30S initiation complex (IC) formation ultimately inhibiting translation. Notably, this G1 inhibition displays a bias for the nature (purine vs. pyrimidine) of the 3'-base of the codon, occurring efficiently only when the mRNA directing 30S IC formation and translation contains the canonical AUG initiation triplet or the rarely found AUA triplet, but hardly occurs when the mRNA start codon is either one of the non-canonical triplets AUU or AUC. This codon discrimination by G1 is reminiscent, though of opposite type of that displayed by IF3 in its fidelity function, and remarkably does not occur in the absence of this factor.


Asunto(s)
Antibacterianos/farmacología , Codón Iniciador , Furanos/farmacología , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , Subunidades Ribosómicas Pequeñas Bacterianas/efectos de los fármacos , Compuestos de Vinilo/farmacología , Sitios de Unión , Subunidades Ribosómicas Pequeñas Bacterianas/química
13.
Nucleic Acids Res ; 40(16): 7946-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22723375

RESUMEN

Translation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single amino acid substitution (E571K) in its 30S binding domain (IF2-G3) can perform in vitro all individual translation initiation functions of wild type (wt) IF2 and supports faithful messenger RNA translation, despite having a reduced affinity for the 30S subunit and being completely inactive in GTP hydrolysis. Furthermore, the corresponding GTPase-null mutant of Bacillus stearothermophilus (E424K) can replace in vivo wt IF2 allowing an E. coli infB null mutant to grow with almost wt duplication times. Following the E571K (and E424K) mutation, which likely disrupts hydrogen bonding between subdomains G2 and G3, IF2 acquires a guanosine diphosphate (GDP)-like conformation, no longer responsive to GTP binding thereby highlighting the importance of interdomain communication in IF2. Our data underlie the importance of GTP as an IF2 ligand in the early initiation steps and the dispensability of the free energy generated by the IF2 GTPase in the late events of the translation initiation pathway.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , GTP Fosfohidrolasas/genética , Geobacillus stearothermophilus/genética , Hidrólisis , Mutación , Factor 2 Procariótico de Iniciación/química , Factor 2 Procariótico de Iniciación/genética , Estructura Terciaria de Proteína , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
14.
Sci Rep ; 14(1): 8042, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580785

RESUMEN

Cell-free protein synthesis (CFPS) systems offer a versatile platform for a wide range of applications. However, the traditional methods for detecting proteins synthesized in CFPS, such as radioactive labeling, fluorescent tagging, or electrophoretic separation, may be impractical, due to environmental hazards, high costs, technical complexity, and time consuming procedures. These limitations underscore the need for new approaches that streamline the detection process, facilitating broader application of CFPS. By harnessing the reassembly capabilities of two GFP fragments-specifically, the GFP1-10 and GFP11 fragments-we have crafted a method that simplifies the detection of in vitro synthesized proteins called FAST (Fluorescent Assembly of Split-GFP for Translation Tests). FAST relies on the fusion of the small tag GFP11 to virtually any gene to be expressed in CFPS. The in vitro synthesized protein:GFP11 can be rapidly detected in solution upon interaction with an enhanced GFP1-10 fused to the Maltose Binding Protein (MBP:GFP1-10). This interaction produces a fluorescent signal detectable with standard fluorescence readers, thereby indicating successful protein synthesis. Furthermore, if required, detection can be coupled with the purification of the fluorescent complex using standardized MBP affinity chromatography. The method's versatility was demonstrated by fusing GFP11 to four distinct E. coli genes and analyzing the resulting protein synthesis in both a homemade and a commercial E. coli CFPS system. Our experiments confirmed that the FAST method offers a direct correlation between the fluorescent signal and the amount of synthesized protein:GFP11 fusion, achieving a sensitivity threshold of 8 ± 2 pmol of polypeptide, with fluorescence plateauing after 4 h. Additionally, FAST enables the investigation of translation inhibition by antibiotics in a dose-dependent manner. In conclusion, FAST is a new method that permits the rapid, efficient, and non-hazardous detection of protein synthesized within CFPS systems and, at the same time, the purification of the target protein.


Asunto(s)
Colorantes , Escherichia coli , Proteínas Fluorescentes Verdes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescencia , Colorantes/metabolismo
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 925-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695237

RESUMEN

Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2-GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.


Asunto(s)
Guanosina Difosfato/química , Guanosina Trifosfato/química , Factor 2 Procariótico de Iniciación/química , Thermus thermophilus/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Molecular , Factor 2 Procariótico de Iniciación/metabolismo , Thermus thermophilus/metabolismo , Difracción de Rayos X
16.
Microorganisms ; 11(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36838276

RESUMEN

The increasing amounts of municipal solid waste and their management in landfills caused an increase in the production of leachate, a liquid formed by the percolation of rainwater through the waste. Leachate creates serious problems to municipal wastewater treatment plants; indeed, its high levels of ammonia are toxic for bacterial cells and drastically reduce the biological removal of nitrogen by activated sludge. In the present work, we studied, using a metagenomic approach based on next-generation sequencing (NGS), the microbial composition of sludge in the municipal wastewater treatment plant of Porto Sant'Elpidio (Italy). Through activated sludge enrichment experiments based on the Repetitive Re-Inoculum Assay, we were able to select and identify a minimal bacterial community capable of degrading high concentrations of ammonium (NH4+-N ≅ 350 mg/L) present in a leachate-based medium. The analysis of NGS data suggests that seven families of bacteria (Alcaligenaceae, Nitrosomonadaceae, Caulobacteraceae, Xanthomonadaceae, Rhodanobacteraceae, Comamonadaceae and Chitinophagaceae) are mainly responsible for ammonia oxidation. Furthermore, we isolated from the enriched sludge three genera (Klebsiella sp., Castellaniella sp. and Acinetobacter sp.) capable of heterotrophic nitrification coupled with aerobic denitrification. These bacteria released a trace amount of both nitrite and nitrate possibly transforming ammonia into gaseous nitrogen. Our findings represent the starting point to produce an optimized microorganisms's mixture for the biological removal of ammonia contained in leachate.

17.
Front Microbiol ; 14: 1144946, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143537

RESUMEN

Introduction: The continued emergence and spread of multidrug-resistant (MDR) bacterial pathogens require a new strategy to improve the efficacy of existing antibiotics. Proline-rich antimicrobial peptides (PrAMPs) could also be used as antibacterial synergists due to their unique mechanism of action. Methods: Utilizing a series of experiments on membrane permeability, In vitro protein synthesis, In vitro transcription and mRNA translation, to further elucidate the synergistic mechanism of OM19r combined with gentamicin. Results: A proline-rich antimicrobial peptide OM19r was identified in this study and its efficacy against Escherichia coli B2 (E. coli B2) was evaluated on multiple aspects. OM19r increased antibacterial activity of gentamicin against multidrug-resistance E. coli B2 by 64 folds, when used in combination with aminoglycoside antibiotics. Mechanistically, OM19r induced change of inner membrane permeability and inhibited translational elongation of protein synthesis by entering to E. coli B2 via intimal transporter SbmA. OM19r also facilitated the accumulation of intracellular reactive oxygen species (ROS). In animal models, OM19r significantly improved the efficacy of gentamicin against E. coli B2. Discussion: Our study reveals that OM19r combined with GEN had a strong synergistic inhibitory effect against multi-drug resistant E. coli B2. OM19r and GEN inhibited translation elongation and initiation, respectively, and ultimately affected the normal protein synthesis of bacteria. These findings provide a potential therapeutic option against multidrug-resistant E. coli.

18.
RNA ; 15(12): 2288-98, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19861425

RESUMEN

The function of initiation factors in and the sequence of events during translation initiation have been intensively studied in Bacteria and Eukaryotes, whereas in Archaea knowledge on these functions/processes is limited. By employing chemical probing, we show that translation initiation factor aIF1 of the model crenarchaeon Sulfolobus solfataricus binds to the same area on the ribosome as the bacterial and eukaryal orthologs. Fluorescence energy transfer assays (FRET) showed that aIF1, like its eukaryotic and bacterial orthologs, has a fidelity function in translation initiation complex formation, and that both aIF1 and aIF1A exert a synergistic effect in stimulating ribosomal association of the Met-tRNAi(Met) binding factor a/eIF2. However, as in Eukaryotes their effect on a/eIF2 binding appears to be indirect. Moreover, FRET was used to analyze for the first time the sequence of events toward translation initiation complex formation in an archaeal model system. These studies suggested that a/eIF2-GTP binds first to the ribosome and then recruits Met-tRNAi(Met), which appears to comply with the operational mode of bacterial IF2, and deviates from the shuttle function of the eukaryotic counterpart eIF2. Thus, despite the resemblance of eIF2 and a/eIF2, recruitment of initiator tRNA to the ribosome is mechanistically different in Pro- and Eukaryotes.


Asunto(s)
Proteínas Arqueales/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN de Archaea/metabolismo , Sulfolobus solfataricus/metabolismo , Secuencia de Bases , Codón Iniciador/genética , Proteínas de Unión al ADN/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , ARN de Archaea/química , ARN de Archaea/genética , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Sulfolobus solfataricus/genética
19.
Microorganisms ; 8(10)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050410

RESUMEN

Second messenger nucleotides, such as guanosine penta- or tetra-phosphate, commonly referred to as (p)ppGpp, are powerful signaling molecules, used by all bacteria to fine-tune cellular metabolism in response to nutrient availability. Indeed, under nutritional starvation, accumulation of (p)ppGpp reduces cell growth, inhibits stable RNAs synthesis, and selectively up- or down- regulates the expression of a large number of genes. Here, we show that the E. coli hns promoter responds to intracellular level of (p)ppGpp. hns encodes the DNA binding protein H-NS, one of the major components of bacterial nucleoid. Currently, H-NS is viewed as a global regulator of transcription in an environment-dependent mode. Combining results from relA (ppGpp synthetase) and spoT (ppGpp synthetase/hydrolase) null mutants with those from an inducible plasmid encoded RelA system, we have found that hns expression is inversely correlated with the intracellular concentration of (p)ppGpp, particularly in exponential phase of growth. Furthermore, we have reproduced in an in vitro system the observed in vivo (p)ppGpp-mediated transcriptional repression of hns promoter. Electrophoretic mobility shift assays clearly demonstrated that this unusual nucleotide negatively affects the stability of RNA polymerase-hns promoter complex. Hence, these findings demonstrate that the hns promoter is subjected to an RNA polymerase-mediated down-regulation by increased intracellular levels of (p)ppGpp.

20.
Gene ; 428(1-2): 31-5, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18951960

RESUMEN

Bacillus stearothermophilus infA encoding translation initiation factor IF1 was cloned and expressed in Escherichia coli and its transcript and protein product characterized. Although the functional properties of B. stearothermophilus and E. coli IF1, compared in several translational tests in the presence of both homologous and heterologous components, are not entirely identical, the two proteins are interchangeable in an in vitro translational system programmed with a natural mRNA. The availability of purified B. stearothermophilus IF1 now allows us to analyze the translation initiation pathway using efficient in vitro tests based entirely on purified components derived from this thermophilic Gram-positive bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Factor 1 Eucariótico de Iniciación/genética , Geobacillus stearothermophilus/genética , Factor 1 Procariótico de Iniciación/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Northern Blotting , Western Blotting , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Geobacillus stearothermophilus/metabolismo , Datos de Secuencia Molecular , Iniciación de la Cadena Peptídica Traduccional , Factor 1 Procariótico de Iniciación/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA