Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 462(3): 453-63, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24957194

RESUMEN

Protein stability is a fundamental issue in biomedical and biotechnological applications of proteins. Among these applications, gene- and enzyme-replacement strategies are promising approaches to treat inherited diseases that may benefit from protein engineering techniques, even though these beneficial effects have been largely unexplored. In the present study we apply a sequence-alignment statistics procedure (consensus-based approach) to improve the activity and stability of the human AGT (alanine-glyoxylate aminotransferase) protein, an enzyme which causes PH1 (primary hyperoxaluria type I) upon mutation. By combining only five consensus mutations, we obtain a variant (AGT-RHEAM) with largely enhanced in vitro thermal and kinetic stability, increased activity, and with no side effects on foldability and peroxisomal targeting in mammalian cells. The structure of AGT-RHEAM reveals changes at the dimer interface and improved electrostatic interactions responsible for increased kinetic stability. Consensus-based variants maintained the overall protein fold, crystallized more easily and improved the expression as soluble proteins in two different systems [AGT and CIPK24 (CBL-interacting serine/threonine-protein kinase) SOS2 (salt-overly-sensitive 2)]. Thus the consensus-based approach also emerges as a simple and generic strategy to increase the crystallization success for hard-to-get protein targets as well as to enhance protein stability and function for biomedical applications.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Transaminasas/uso terapéutico , Animales , Células CHO , Cricetulus , Cristalización , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia , Alineación de Secuencia , Solubilidad , Transaminasas/genética
2.
PLoS One ; 8(8): e71963, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205397

RESUMEN

Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 Å crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Hiperoxaluria Primaria/genética , Desnaturalización Proteica , Transaminasas/genética , Transaminasas/metabolismo , Animales , Células CHO , Cricetulus , Humanos , Hiperoxaluria Primaria/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Transaminasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA