RESUMEN
The diversity of the plant biomass available on earth makes plants an exceptional resource for replacing fossil resources in green chemistry, bioenergy and biobased materials. For numerous applications, and especially the high-tech ones (building block molecules, high-power bioenergy, additive manufacturing of biobased materials), the macrostructure assemblies of the plant biomass often need to be first broken down into a fine powder. This can be achieved by dry fractionation process combining comminution and sorting steps. The chemical and physical properties of the ground plant powder results both from the process conditions, the histological structure and chemical composition of the raw plant materials. In a forward engineering approach, the quality of the final products can be highly improved by the selection of the right powder (raw materials and production process) for the right application. This article provides production routes together with physical and chemical characterization of 10 biomass powders from 6 different biomass feedstocks (SP - spirulina, HI - hibiscus, PB - pine bark, HC - hemp Core, RH - rice husk and RHA - rice husk ash). These feedstocks represent a broad range of raw materials properties. For pine bark, hemp core, rice husk and rice husk ash, two grades of powders related to two different particle sizes were produced by two different routes to highlight the impact of the comminution process on the powder properties. The devices used and the process parameters are described. The morphological properties of the powder were quantified using laser diffraction (particle size) and image analysis (shape factor) and qualitatively analyzed with SEM. The specific surface area was determined using gas sorption with BET theory, and the hygroscopic properties were measured using direct vapor sorption. The chemical characterizations were determined with a set of biochemical assays and, complementary, FTIR and fluorescence spectra were recorded to provide fingerprints of samples. The dataset includes tables that summarize the main characteristic descriptors of each analysis as well as the raw data. The data are registered in the French Research Data Gouv public repository and also stored in the PO2 BaGaTel database using the PO2/TransformON ontology [1]. SPO2Q web tool allows on line querying of the database, which can also be consulted using PO2 manager desktop application [[1], [2], [3]].
RESUMEN
Background: Lignocellulosic biomass has many functionalities that hold huge potential for material, energy or chemistry applications. To support advanced applications, the biomass must be milled into ultrafine powder to increase reactivity. This milling unit operation needs to be fully mastered to deliver high-quality standard end-products. Here we studied the relationship between the characteristics of the starting lignocellulosic plant material and the properties of the resulting ultrafine powder in different ball-mill process routes. Methods: Two lignocellulosic biomasses (pine bark and wheat straw) with contrasted compositional and mechanical properties were milled using three ball-mill set-ups delivering different balances of impact force and attrition force. The resulting powders were analysed for particle characteristics (size, agglomeration extent, shape) and powder flow properties (compressibility, cohesion) using a dynamic powder rheometer. Results: Pine bark is more amenable to a fast particle size reduction than the fibrous wheat straw. The resulting pine bark powders appear less compressible but much more cohesive than the straw powders due to particle shape, density and composition factors. The mill set-up working by attrition as dominant mechanical force (vibratory ball mill) produced a mix of large, elongated particles and higher amounts of fines as it acts mainly by erosion, the resulting powder being more prone to agglomerate due to the abundance of fines. The mill set-up working by impact as dominant mechanical force (rotary ball mill) produced more evenly distributed particle sizes and shapes. The resulting powder is less prone to agglomerate due to a preferential fragmentation mechanism. Conclusions: The attrition-dominant mill yields powders with dispersed particle sizes and shapes and the poorest flow properties, while the impact-dominant mill yields more agglomeration-prone powders. The mill set-up working with impact and attrition as concomitant mechanical forces (stirred ball mill) produces powders with better reactivity and flow properties compared to rotary and vibratory mills.
RESUMEN
Lignocellulosic biomass represents a readily available reservoir of functional elements that can be an alternative to fossil resources for energy, chemicals and materials production. However, comminution of lignocellulosic biomass into fine particles is required to reveal its functionalities, improve its reactivity and allow practical implementation in the downstream processing steps (carrying, dosage, mixing, formulation, shaping ). The sources of lignocellulosics are diverse, with two main families, being agricultural and forest by-products. Due to plant specificity and natural variability, the itineraries of particle size reduction by dry processing, the behavior upon milling and therefore the characteristics of resulting powders can deeply vary according to various raw biomasses [[1], [2]]. This data article contains milling itineraries and granulometric properties of the resulting powders obtained from a collection of by-products from crops (flax fibers, hemp core, rice husk, wheat straw) and woods (pine wood pellets, pine bark, pine sawdust, Douglas shavings, chestnut tree sawdust) representative of currently used lignocellulosic biomass. Samples provided in the form of large pieces (hemp core, pine bark, Douglas shavings) were successively milled using different mills to progressively reduce the matter into coarse, intermediate and finally fine powders. The other samples, supplied as sufficiently small format, were directly processed in the fine powder mill. The machine characteristics and their operating parameters were recorded. The granulometric properties of the powders were analyzed with a laser granulometer and the main indicators related to the particle size distribution (PSD) are presented: (i) d10, d50 (or median diameter) and d90 which are the 10th, 50th and 90th percentiles of the cumulative volume distribution; (ii) the span, which evaluates the width of the particle size distribution; (iii) the calculated specific surface area of the powders which represents the sum of total surface exhibited by the particles per unit of gram and for some powders. The whole particle size distribution of a subset of produced powder samples are also provided for different milling times to illustrate the kinetics of particle size reduction. These data are stored in INRAE public repository and have been structured using BIOREFINERY ontology [3]. These data are also replicated in atWeb data warehouse providing additional query tools [[3], [4]].