Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Med ; 28(1): 108, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071400

RESUMEN

BACKGROUND: High-mobility group box 1 protein (HMGB1) is an ubiquitous nuclear protein that once released in the extracellular space acts as a Damage Associated Molecular Pattern and promotes inflammation. HMGB1 is significantly elevated during Pseudomonas aeruginosa infections and has a clinical relevance in respiratory diseases such as Cystic Fibrosis (CF). Salicylates are HMGB1 inhibitors. To address pharmacological inhibition of HMGB1 with small molecules, we explored the therapeutic potential of pamoic acid (PAM), a salicylate with limited ability to cross epithelial barriers. METHODS: PAM binding to HMGB1 and CXCL12 was tested by Nuclear Magnetic Resonance Spectroscopy using chemical shift perturbation methods, and inhibition of HMGB1·CXCL12-dependent chemotaxis was investigated by cell migration experiments. Aerosol delivery of PAM, with single or repeated administrations, was tested in murine models of acute and chronic P. aeruginosa pulmonary infection in C57Bl/6NCrlBR mice. PAM efficacy was evaluated by read-outs including weight loss, bacterial load and inflammatory response in lung and bronco-alveolar lavage fluid. RESULTS: Our data and three-dimensional models show that PAM is a direct ligand of both HMGB1 and CXCL12. We also showed that PAM is able to interfere with heterocomplex formation and the related chemotaxis in vitro. Importantly, PAM treatment by aerosol was effective in reducing acute and chronic airway murine inflammation and damage induced by P. aeruginosa. The results indicated that PAM reduces leukocyte recruitment in the airways, in particular neutrophils, suggesting an impaired in vivo chemotaxis. This was associated with decreased myeloperoxidase and neutrophil elastase levels. Modestly increased bacterial burdens were recorded with single administration of PAM in acute infection; however, repeated administration in chronic infection did not affect bacterial burdens, indicating that the interference of PAM with the immune system has a limited risk of pulmonary exacerbation. CONCLUSIONS: This work established the efficacy of treating inflammation in chronic respiratory diseases, including bacterial infections, by topical delivery in the lung of PAM, an inhibitor of HMGB1.


Asunto(s)
Quimiocina CXCL12 , Proteína HMGB1 , Naftoles , Neumonía Bacteriana , Animales , Quimiocina CXCL12/antagonistas & inhibidores , Quimiotaxis/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína HMGB1/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Naftoles/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Pseudomonas aeruginosa/metabolismo
2.
ACS Chem Biol ; 17(1): 230-239, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34968022

RESUMEN

The SYLF domain is an evolutionary conserved protein domain with phosphatidylinositol binding ability, whose three-dimensional structure is unknown. Here, we present the solution structure and the dynamics characterization of the SYLF domain of the bacterial BPSL1445 protein. BPSL1445 is a seroreactive antigen and a diagnostic marker of Burkholderia pseudomallei, the etiological agent of melioidosis, a severe infectious disease in the tropics. The BPSL1445 SYLF domain (BPSL1445-SYLF) consists of a ß-barrel core, with two flexible loops protruding out of the barrel and three helices packing on its surface. Our structure allows for a more precise definition of the boundaries of the SYLF domain compared to the previously reported one and suggests common ancestry with bacterial EipA domains. We also demonstrate by phosphatidyl-inositol phosphate arrays and nuclear magnetic resonance titrations that BPSL1445-SYLF weakly interacts with phosphoinositides, thus supporting lipid binding abilities of this domain also in prokaryotes.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Dominios Proteicos , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Fosfatidilinositoles/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA