Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(34): e2208077119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969791

RESUMEN

Over half of new therapeutic approaches fail in clinical trials due to a lack of target validation. As such, the development of new methods to improve and accelerate the identification of cellular targets, broadly known as target ID, remains a fundamental goal in drug discovery. While advances in sequencing and mass spectrometry technologies have revolutionized drug target ID in recent decades, the corresponding chemical-based approaches have not changed in over 50 y. Consigned to outdated stoichiometric activation modes, modern target ID campaigns are regularly confounded by poor signal-to-noise resulting from limited receptor occupancy and low crosslinking yields, especially when targeting low abundance membrane proteins or multiple protein target engagement. Here, we describe a broadly general platform for photocatalytic small molecule target ID, which is founded upon the catalytic amplification of target-tag crosslinking through the continuous generation of high-energy carbene intermediates via visible light-mediated Dexter energy transfer. By decoupling the reactive warhead tag from the small molecule ligand, catalytic signal amplification results in unprecedented levels of target enrichment, enabling the quantitative target and off target ID of several drugs including (+)-JQ1, paclitaxel (Taxol), dasatinib (Sprycel), as well as two G-protein-coupled receptors-ADORA2A and GPR40.


Asunto(s)
Sistemas de Liberación de Medicamentos , Transferencia de Energía , Proteómica , Descubrimiento de Drogas , Espectrometría de Masas
2.
Nat Chem Biol ; 18(8): 850-858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35654846

RESUMEN

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.


Asunto(s)
Antígeno B7-H1 , Leucocitos Mononucleares , Comunicación Celular , Flavinas , Inmunoterapia
3.
J Am Chem Soc ; 145(30): 16289-16296, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471577

RESUMEN

The characterization of ligand binding modes is a crucial step in the drug discovery process and is especially important in campaigns arising from phenotypic screening, where the protein target and binding mode are unknown at the outset. Elucidation of target binding regions is typically achieved by X-ray crystallography or photoaffinity labeling (PAL) approaches; yet, these methods present significant challenges. X-ray crystallography is a mainstay technique that has revolutionized drug discovery, but in many cases structural characterization is challenging or impossible. PAL has also enabled binding site mapping with peptide- and amino-acid-level resolution; however, the stoichiometric activation mode can lead to poor signal and coverage of the resident binding pocket. Additionally, each PAL probe can have its own fragmentation pattern, complicating the analysis by mass spectrometry. Here, we establish a robust and general photocatalytic approach toward the mapping of protein binding sites, which we define as identification of residues proximal to the ligand binding pocket. By utilizing a catalytic mode of activation, we obtain sets of labeled amino acids in the proximity of the target protein binding site. We use this methodology to map, in vitro, the binding sites of six protein targets, including several kinases and molecular glue targets, and furthermore to investigate the binding site of the STAT3 inhibitor MM-206, a ligand with no known crystal structure. Finally, we demonstrate the successful mapping of drug binding sites in live cells. These results establish µMap as a powerful method for the generation of amino-acid- and peptide-level target engagement data.


Asunto(s)
Péptidos , Proteínas , Ligandos , Proteínas/química , Sitios de Unión , Péptidos/química , Unión Proteica
4.
Nat Chem Biol ; 17(6): 641-652, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34035514

RESUMEN

Multicellular organisms depend on physical cell-cell interactions to control physiological processes such as tissue formation, neurotransmission and immune response. These intercellular binding events can be both highly dynamic in their duration and complex in their composition, involving the participation of many different surface and intracellular biomolecules. Untangling the intricacy of these interactions and the signaling pathways they modulate has greatly improved insight into the biological processes that ensue upon cell-cell engagement and has led to the development of protein- and cell-based therapeutics. The importance of monitoring physical cell-cell interactions has inspired the development of several emerging approaches that effectively interrogate cell-cell interfaces with molecular-level detail. Specifically, the merging of chemistry- and biology-based technologies to deconstruct the complexity of cell-cell interactions has provided new avenues for understanding cell-cell interaction biology and opened opportunities for therapeutic development.


Asunto(s)
Biología Celular , Comunicación Celular/fisiología , Animales , Comunicación Celular/efectos de los fármacos , Humanos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
5.
Org Biomol Chem ; 21(1): 98-106, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36477737

RESUMEN

Receptor-ligand interactions play essential signaling roles within intercellular contact regions. This is particularly important within the context of the immune synapse where protein communication at the surface of physically interacting T cells and antigen-presenting cells regulate downstream immune signaling responses. To identify protein microenvironments within immunological synapses, we combined a flavin-dependent photocatalytic labeling strategy with quantitative mass spectrometry-based proteomics. Using α-PD-L1 or α-PD-1 single-domain antibody (VHH)-based photocatalyst targeting modalities, we profiled protein microenvironments within the intercellular region of an immune synapse-forming co-culture system. In addition to enrichment of both PD-L1 and PD-1 with either targeting modality, we also observed enrichment of both known immune synapse residing receptor-ligand pairs and surface proteins, as well as previously unknown synapse residing proteins.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Ligandos , Proteómica , Catálisis
6.
Nature ; 526(7572): 273-276, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26416749

RESUMEN

Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling transcription factors and oncogenes. BRD4 and CDK7 are positive regulators of SE-mediated transcription. By contrast, negative regulators of SE-associated genes have not been well described. Here we show that the Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We report that the natural product cortistatin A (CA) selectively inhibits Mediator kinases, has anti-leukaemic activity in vitro and in vivo, and disproportionately induces upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the transcription factors CEBPA, IRF8, IRF1 and ETV6 (refs 6-8). The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has anti-leukaemic activity. Individually increasing or decreasing the expression of these transcription factors suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to the dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types, and can be pharmacologically targeted as a therapeutic approach to AML.


Asunto(s)
Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Relacionados con las Neoplasias/genética , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Animales , Proteínas de Ciclo Celular , División Celular/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Supresores de Tumor/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos , Ratones SCID , Proteínas Nucleares/antagonistas & inhibidores , Compuestos Policíclicos/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
Chembiochem ; 21(24): 3555-3562, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749732

RESUMEN

Despite the growing use of visible-light photochemistry in both chemistry and biology, no general low-heat photoreactor for use across these different disciplines exists. Herein, we describe the design and use of a standardized photoreactor for visible-light-driven activation and photocatalytic chemical transformations. Using this single benchtop photoreactor, we performed photoredox reactions across multiple visible light wavelengths, a high-throughput photocatalytic cross-coupling reaction, and in vitro labeling of proteins and live cells. Given the success of this reactor in all tested applications, we envision that this multi-use photoreactor will be widely used in biology, chemical biology, and medicinal chemistry settings.


Asunto(s)
Biotina/análisis , Luz , Fotobiorreactores , Tiramina/química , Catálisis , Línea Celular Tumoral , Diseño de Equipo , Humanos , Estructura Molecular , Procesos Fotoquímicos , Tiramina/análogos & derivados , Tiramina/síntesis química
8.
J Am Chem Soc ; 139(8): 3209-3226, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28140573

RESUMEN

Driven by the ever-increasing pace of drug discovery and the need to push the boundaries of unexplored chemical space, medicinal chemists are routinely turning to unusual strained bioisosteres such as bicyclo[1.1.1]pentane, azetidine, and cyclobutane to modify their lead compounds. Too often, however, the difficulty of installing these fragments surpasses the challenges posed even by the construction of the parent drug scaffold. This full account describes the development and application of a general strategy where spring-loaded, strained C-C and C-N bonds react with amines to allow for the "any-stage" installation of small, strained ring systems. In addition to the functionalization of small building blocks and late-stage intermediates, the methodology has been applied to bioconjugation and peptide labeling. For the first time, the stereospecific strain-release "cyclopentylation" of amines, alcohols, thiols, carboxylic acids, and other heteroatoms is introduced. This report describes the development, synthesis, scope of reaction, bioconjugation, and synthetic comparisons of four new chiral "cyclopentylation" reagents.


Asunto(s)
Alcoholes/química , Aminas/química , Ácidos Carboxílicos/química , Compuestos de Sulfhidrilo/química , Alcoholes/síntesis química , Aminas/síntesis química , Ácidos Carboxílicos/síntesis química , Estructura Molecular , Estereoisomerismo , Compuestos de Sulfhidrilo/síntesis química
9.
Angew Chem Int Ed Engl ; 56(48): 15309-15313, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28960645

RESUMEN

A visible-light-driven Minisci protocol that employs an inexpensive earth-abundant metal catalyst, decacarbonyldimanganese Mn2 (CO)10 , to generate alkyl radicals from alkyl iodides has been developed. This Minisci protocol is compatible with a wide array of sensitive functional groups, including oxetanes, sugar moieties, azetidines, tert-butyl carbamates (Boc-group), cyclobutanes, and spirocycles. The robustness of this protocol is demonstrated on the late-stage functionalization of complex nitrogen-containing drugs. Photophysical and DFT studies indicate a light-initiated chain reaction mechanism propagated by . Mn(CO)5 . The rate-limiting step is the iodine abstraction from an alkyl iodide by . Mn(CO)5 .

10.
Chembiochem ; 17(20): 1925-1930, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27504718

RESUMEN

Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.


Asunto(s)
Sondas Moleculares/síntesis química , Ácidos Sulfínicos/síntesis química , Química Clic , Modelos Moleculares , Sondas Moleculares/química , Estructura Molecular , Ácidos Sulfínicos/química
11.
Org Biomol Chem ; 14(28): 6611-37, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27282396

RESUMEN

New advances in synthetic methodologies that allow rapid access to a wide variety of functionalized heterocyclic compounds are of critical importance to the medicinal chemist as it provides the ability to expand the available drug-like chemical space and drive more efficient delivery of drug discovery programs. Furthermore, the development of robust synthetic routes that can readily generate bulk quantities of a desired compound help to accelerate the drug development process. While established synthetic methodologies are commonly utilized during the course of a drug discovery program, the development of innovative heterocyclic syntheses that allow for different bond forming strategies are having a significant impact in the pharmaceutical industry. This review will focus on recent applications of new methodologies in C-H activation, photoredox chemistry, borrowing hydrogen catalysis, multicomponent reactions, regio- and stereoselective syntheses, as well as other new, innovative general syntheses for the formation and functionalization of heterocycles that have helped drive project delivery. Additionally, the importance and value of collaborations between industry and academia in shaping the development of innovative synthetic approaches to functionalized heterocycles that are of greatest interest to the pharmaceutical industry will be highlighted.


Asunto(s)
Técnicas de Química Sintética/métodos , Descubrimiento de Drogas/métodos , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Humanos , Oxidación-Reducción , Procesos Fotoquímicos , Estereoisomerismo
12.
BMC Complement Altern Med ; 13: 79, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23565862

RESUMEN

BACKGROUND: Plants that are used as traditional medicine represent a relevant pool for selecting plant candidates that may have anticancer properties. In this study, the ethnomedicinal approach was used to select several medicinal plants native to Nigeria, on the basis of their local or traditional uses. The collected plants were then evaluated for cytoxicity. METHODS: The antitumor activity of methanolic extracts obtained from 24 of the selected plants, were evaluated in vitro on five human cancer cell lines. RESULTS: Results obtained from the plants screened indicate that 18 plant extracts of folk medicine exhibited promising cytotoxic activity against human carcinoma cell lines. Erythrophleum suaveolens (Guill. & Perr.) Brenan was found to demonstrate potent anti-cancer activity in this study exhibiting IC(50) = 0.2-1.3 µg/ml. CONCLUSIONS: Based on the significantly potent activity of some plants extracts reported here, further studies aimed at mechanism elucidation and bio-guided isolation of active anticancer compounds is currently underway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Extractos Vegetales/farmacología , Plantas Medicinales/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Neoplasias/fisiopatología , Nigeria
13.
Chem Sci ; 14(26): 7327-7333, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37416718

RESUMEN

Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism-primarily with the excited riboflavin-photocatalyst or singlet oxygen-and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical-radical recombination.

14.
Nat Chem ; 15(1): 101-109, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216892

RESUMEN

State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.


Asunto(s)
Neoplasias del Colon , Luz , Humanos , Molécula de Adhesión Celular Epitelial , Catálisis
15.
Cell Chem Biol ; 30(10): 1313-1322.e7, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37499664

RESUMEN

Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus , Proteínas Virales/metabolismo , Unión Proteica
16.
Nat Chem ; 15(9): 1267-1275, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322100

RESUMEN

Target identification involves deconvoluting the protein target of a pharmacologically active, small-molecule ligand, a process that is critical for early drug discovery yet technically challenging. Photoaffinity labelling strategies have become the benchmark for small-molecule target deconvolution, but covalent protein capture requires the use of high-energy ultraviolet light, which can complicate downstream target identification. Thus, there is a strong demand for alternative technologies that allow for controlled activation of chemical probes to covalently label their protein target. Here we introduce an electroaffinity labelling platform that leverages the use of a small, redox-active diazetidinone functional group to enable chemoproteomic-based target identification of pharmacophores within live cell environments. The underlying discovery to enable this platform is that the diazetidinone can be electrochemically oxidized to reveal a reactive intermediate useful for covalent modification of proteins. This work demonstrates the electrochemical platform to be a functional tool for drug-target identification.


Asunto(s)
Descubrimiento de Drogas , Proteínas , Proteínas/metabolismo , Etiquetas de Fotoafinidad/química , Ligandos , Farmacóforo
17.
Chemistry ; 18(19): 5826-31, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22473565

RESUMEN

Closing in on azacines: We have developed a new six step approach for the rapid and enantioselective synthesis of indolizidine, pyrrolo[1,2-a]azepine, and pyrrolo[1,2-a]azocine azabicyclic systems and their respective lactam congeners, which are found in a host of natural products as well as pharmaceutical preparations. This protocol enables a concise enantioselective total synthesis of (+)-grandisine D in 16.4 % overall yield from commercial materials (see scheme).


Asunto(s)
Alcaloides/síntesis química , Compuestos de Azabiciclo/síntesis química , Productos Biológicos/síntesis química , Indolizinas/síntesis química , Alcaloides/química , Compuestos de Azabiciclo/química , Productos Biológicos/química , Ciclización , Indolizinas/química , Lactamas Macrocíclicas/síntesis química , Lactamas Macrocíclicas/química , Estructura Molecular , Estereoisomerismo
18.
Tetrahedron Lett ; 53(28): 3577-3580, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22822275

RESUMEN

In this Letter, we describe the first total synthesis of cremastrine, a pyrrolizidine alkaloid from Cremastra appendiculata, with anticholinergic activity as well as an unnatural analogue. The streamlined synthesis proceeds in 9 steps, 7 steps longest linear sequence, in 25.2% overall yield, and features novel methodology to construct the pyrrolizidine core. Biological evaluation of cremastrine and the unnatural analogue indicated that both are pan-mAChR functional antagonists.

19.
ACS Chem Biol ; 17(8): 2304-2314, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35939534

RESUMEN

Receptor tyrosine kinases are involved in essential signaling roles that impact cell growth, differentiation, and proliferation. The overexpression or mutation of these proteins can lead to aberrant signaling that has been directly linked to a number of diseases including cancer cell formation and progression. This has led to intense clinical focus on modulating RTK activity through direct targeting of signaling activity or cell types harboring aberrant RTK behavior. In particular, epidermal growth factor receptor (EGFR) has attracted intense clinical attention due to the impact of inhibiting this RTK on tumor growth. However, mutations incurred through targeting EGFR have led to therapeutic resistance that involves not only direct mutations to the EGFR protein but also the involvement of other RTKs, such as c-MET, that can overcome therapeutic-based EGFR inhibition effects. This has, not surprisingly, led to co-targeting strategies of RTKs such as EGFR and c-MET to overcome resistance mechanisms. While the ability to co-target these proteins has led to success in the clinic, a more comprehensive understanding of their proximal environments, particularly in the context of therapeutic modalities, could further enhance both our understanding of their signaling biology and provide additional avenues for targeting these surface proteins. Thus, to investigate EGFR and c-MET protein microenvironments, we utilized our recently developed iridium photocatalyst-based microenvironment mapping technology to catalog EGFR and c-MET surface environments on non-small cell lung cancer cell lines. Through this approach, we enriched EGFR and c-MET from the cell surface and identified known EGFR and c-MET associators as well as previously unidentified proximal proteins.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Microambiente Tumoral
20.
Cell Rep ; 38(8): 110399, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35139367

RESUMEN

Follicular helper T (Tfh) cells promote, whereas follicular regulatory T (Tfr) cells restrain, germinal center (GC) reactions. However, the precise roles of these cells in the complex GC reaction remain poorly understood. Here, we perturb Tfh or Tfr cells after SARS-CoV-2 spike protein vaccination in mice. We find that Tfh cells promote the frequency and somatic hypermutation (SHM) of Spike-specific GC B cells and regulate clonal diversity. Tfr cells similarly control SHM and clonal diversity in the GC but do so by limiting clonal competition. In addition, deletion of Tfh or Tfr cells during primary vaccination results in changes in SHM after vaccine boosting. Aged mice, which have altered Tfh and Tfr cells, have lower GC responses, presenting a bimodal distribution of SHM. Together, these data demonstrate that GC responses to SARS-CoV-2 spike protein vaccines require a fine balance of positive and negative follicular T cell help to optimize humoral immunity.


Asunto(s)
COVID-19/prevención & control , Centro Germinal/inmunología , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Envejecimiento , Animales , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Linfocitos B/metabolismo , COVID-19/virología , Centro Germinal/citología , Centro Germinal/metabolismo , Inmunidad Humoral , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Vacunación , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA