Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharmacol ; 100(5): 428-455, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34452975

RESUMEN

Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Hiperglucemia/prevención & control , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Estrés Oxidativo/fisiología , Vasodilatadores/farmacología
2.
BMC Evol Biol ; 19(1): 76, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866798

RESUMEN

BACKGROUND: Unspecific peroxygenases (UPO) (EC 1.11.2.1) represent an intriguing oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity. With over 300 identified substrates, UPOs catalyze numerous oxidations including 1- or 2- electron oxygenation, selective oxyfunctionalizations, which make them most significant in organic syntheses and potentially attractive as industrial biocatalysts. There are very few UPOs available with distinct properties, notably, MroUPO which shows behavior ranging between UPO and another heme-thiolate peroxidase, called Chloroperoxidase (CPO). It prompted us to search for more UPOs in fungal kingdom which led us to studying their relationship with CPO. RESULTS: In this study, we searched for novel UPOs in more than 800 fungal genomes and found 113 putative UPO-encoding sequences distributed in 35 different fungal species (or strains), amongst which single sequence per species were subjected to phylogeny study along with CPOs. Our phylogenetic study show that the UPOs are distributed in Basidiomycota and Ascomycota phyla of fungi. The sequence analysis helped to classify the UPOs into five distinct subfamilies: classic AaeUPO and four new subfamilies with potential new traits. We have also shown that each of these five subfamilies (supported by) have their own signature motifs. Surprisingly, some of the CPOs appeared to be a type of UPOs indicating that they were previously identified incorrectly. Selection pressure was observed on important motifs in UPOs which could have driven their functional divergence. Furthermore, the sites having different evolutionary rates caused by the functional divergence were also identified on some motifs along with the other relevant amino acid residues. Finally, we predicted critical amino acids responsible for the functional divergence in the UPOs and identified some sequence differences among UPOs, CPOs, and MroUPO to predict it's ranging behavior. CONCLUSION: This study discovers new UPOs, provides a glimpse of their evolution from CPOs, and presents new insight on their functional divergence. We present a new classification of UPOs and shed new light on its phylogenetics. These different UPOs may exhibit a wide range of characteristics and specificities which may help in various fields of synthetic chemistry and industrial biocatalysts, and may as well lead to an advancement towards the understanding of physiological role of UPOs in fungi.


Asunto(s)
Evolución Molecular , Oxigenasas de Función Mixta/metabolismo , Familia de Multigenes , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ascomicetos/enzimología , Basidiomycota/enzimología , Secuencia Conservada , Variación Genética , Funciones de Verosimilitud , Oxigenasas de Función Mixta/química , Filogenia , Selección Genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-39161148

RESUMEN

BACKGROUND: Shiga Toxin-Producing Escherichia coli (E. coli O157:H7), capable of causing serious food-borne illnesses, is extensively studied and is known to be transmitted through animal reservoirs or person-to-person contact, leading to severe disease outbreaks. The emergence of antibiotic resistance in these strains, coupled with increased adverse effects of existing therapeutics, underscores the urgent need for alternative therapeutic strategies. OBJECTIVE: This study aims to evaluate Glutamate Racemase (MurI protein) of the food-path-ogenic E. coli O157:H7 (EC MurI) as a novel drug target. Furthermore, the study seeks to identify new compounds with potential inhibitory effects against this protein. METHODS: Using computational tools, the study identified inhibitor binding sites on EC MurI and identified relevant inhibitors capable of binding to these sites. Molecular docking tech-niques were employed to assess potential hits, and selected compounds were further analyzed for their structural activity and binding affinity to the protein. RESULTS: The results of the study revealed that Frigocyclinone and Deslanoside, exhibited the best binding affinity with EC-MurI. Subsequent molecular dynamic (MD) simulations of the selected complexes indicated that both compounds were stable. This suggests that Frigocy-clinone and Deslanoside have the potential to serve as potent inhibitors of EC-MurI. CONCLUSION: In summary, this study highlights the urgent need for alternative therapies against food-pathogenic E. coli, focusing on E. coli O157:H7. Evaluation of Glutamate Race-mase as a drug target identified Frigocyclinone and Deslanoside as promising inhibitors. MD simulations indicated their stability, suggesting their potential as lead molecules for further research and treatment development.

4.
Database (Oxford) ; 20192019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31820805

RESUMEN

There are many unspecific peroxygenases (UPOs) or UPO-like extracellular enzymes secreted by fungal species. These enzymes are considered special in their ways of catalyzing a wide variety of reactions such as epoxidation, peroxygenation and electron oxidations. This enzyme family exhibits diverse functions with thousands of UPOs and UPO-like sequences. These sequences are difficult to analyze without proper management tool and therefore desperately calls for a unified platform that can aide with annotation, classification, navigation and easy sequence retrieval. This prompted us to create an online database called Unspecific Peroxygenase Database (UPObase) (upobase.bioinformaticsreview.com) which currently includes 1948 peroxygenase-encoding protein sequences mined from more than 800 available fungal genomes. It provides information such as classification and motifs about each sequence and has functions such as homology search against UPObase sequence analyses such as multiple sequence alignments and phylogenetic trees. It also provides a new sequence submission facility. The database has been made user-friendly facilitating systematic search and filters. UPObase allows users to search for the sequences by organism name, cluster ID and accession number. Notably, in our previous study, 113 UPOs were classified into five subfamilies (I, II, III, IV and V) and an undetermined group (Pog) which remain established. In this study, using 1948 UPOs in our database, we were able to further identify six novel sub-superfamilies (Pog-a, Pog-b, Pog-c, Pog-d, Pog-e and Pog-f) with signature motifs and two distinct groups in Subfamily I and III, Ia and Ib, IIIa and IIIb, respectively. With the novel UPO-like sequences and classification, UPObase may serve for researchers working in the area of enzyme engineering and related fields.


Asunto(s)
Bases de Datos de Proteínas , Oxigenasas de Función Mixta/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Hongos/enzimología , Hongos/genética , Genoma Fúngico , Oxigenasas de Función Mixta/química , Filogenia , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Interfaz Usuario-Computador
5.
Enzyme Microb Technol ; 117: 56-63, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30037552

RESUMEN

Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Ácidos Grasos/química , Proteínas Fúngicas/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Lipasa/metabolismo , Mutación , Triglicéridos/metabolismo , Catálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Esterificación , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácidos Linoleicos Conjugados/química , Lipasa/química , Lipasa/genética , Triglicéridos/química
6.
Appl Biochem Biotechnol ; 184(4): 1061-1072, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28948493

RESUMEN

A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.


Asunto(s)
Metanol/química , Simulación del Acoplamiento Molecular , Aceite de Salvado de Arroz/química
7.
Prog Lipid Res ; 68: 119-137, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29051014

RESUMEN

Furan fatty acids are found in plants, algae, and fish, and reported to have some positive health benefits, including anti-oxidant and anti-inflammatory activities, and inhibition of non-enzymatic lipid peroxidation. A major metabolite of furan fatty acids, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), has been reported to be increased in patients who progress from prediabetes to type 2 diabetes, although CMPF is not necessarily associated with impaired glucose metabolism. Other studies report that CMPF levels are lower in subjects with diabetes than control subjects. Plasma CMPF levels increase in subjects who consume fish or fish oil, and in patients with renal failure. It is not known where furan fatty acids are converted to CMPF and it is speculated that this might be a result of microbiome activity. The plasma levels reported for CMPF in healthy, diabetic and patients with renal disease vary by factors of more than 100-fold within each of these three groups, so measurement error appears to be limiting the ability to interpret studies. This review explores these controversies and raises questions about whether CMPF is a marker for healthy diets or indeed associated with diabetes and renal health. The review concludes that, on balance, furan fatty acids are beneficial for health.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Furanos/química , Salud , Diabetes Mellitus/metabolismo , Ácidos Grasos/biosíntesis , Humanos , Insuficiencia Renal/metabolismo
8.
Bioinformation ; 12(3): 98-104, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28149042

RESUMEN

BACKGROUND: Single nucleotide substitutions (SNS) in genetic codon are of prime importance due to their ability to alter an amino acid sequence as a result. Given the nature of genetic code, any SNS is expected to change the protein sequence randomly into any of the 64 possible codons. In this paper, we present a theoretical analysis of how single nucleotide substitutions in genetic codon may affect resulting amino acid residue and what is the most likely amino acid that will get selected as a result. METHODS: A probability matrix was developed showing possible changes and routes likely being followed as a result of base substitution mutation causing changes at the translational level for the amino acid being encoded. RESULTS: We observe that in event of single base pair substitution in a given amino acid; a chosen set of amino acids is theoretically more probable to be resulted suggesting a directional rather than a random change. This study also indicates that for a given amino acid coded by a number of synonymous codons, all synonymous codons will result into same list of amino acids in case of all possible SNS at three positions. CONCLUSION: The present work has resulted into development of a theoretical probability matrix which can be used to predict changes in amino acid residues in a protein sequence caused by single base substitutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA