Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Neurosci Methods ; 380: 109675, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872154

RESUMEN

BACKGROUND: The conventional focus on discrete finger movements (i.e., index finger flexion or button-box key presses) has been an effective method to study neuromotor control using magnetoencephalography (MEG). However, this approach is challenging for young children and not possible for some people with physical disability. NEW METHOD: We have developed a novel, interactive MEG compatible reach-to-target task to investigate neuromotor function, specifically for use with young children. We used an infrared touch-screen frame to detect responses to targets presented using custom software. The game can be played using a conventional computer monitor or during MEG recordings via projector. We termed this game the Target-Touch Motor Task (TTMT). RESULTS: We demonstrate that the TTMT is a feasible motor task for use with young children including children with physical impairments. TTMT response-to-target trial counts are also comparable to conventional methods. Artifacts from the touch screen, while present > 100 Hz, did not affect MEG source analysis in the beta band (14-30 Hz). MEG responses during TTMT game play reveal robust cortical activity from expected areas of motor cortex as typically observed following movements of the upper limb. COMPARISON WITH EXISTING METHOD(S): The TTMT paradigm allows participation by individuals with a broad range of motor abilities on a reach-to-target' functional task rather than conventional tasks focusing on discrete finger movements. CONCLUSIONS: The TTMT is well suited for young children and successfully activates expected motor cortical areas. The TTMT opens-up new opportunities for the assessment of motor function across the lifespan, including for children with physical limitations.


Asunto(s)
Magnetoencefalografía , Corteza Motora , Niño , Preescolar , Dedos/fisiología , Humanos , Magnetoencefalografía/métodos , Corteza Motora/fisiología , Movimiento/fisiología
2.
Traffic Inj Prev ; 23(sup1): S111-S116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862895

RESUMEN

OBJECTIVES: The aim of this study was to analyze the kinematics and kinetics of a naturalistically seated 6-year-old (6YO) pediatric human body model and evaluate the metrics described by earlier studies for pediatric ATDs to indicate whether different postures and booster seats were more associated with submarining than others in a frontal impact. METHODS: The PIPER 6YO pediatric human body model was restrained on a lowback (LBB) and a highback (HBB) booster child restraint seat (CRS) in four naturalistic seating postures: leaning-forward, leaning-inboard, leaning-outboard, and a pre-submarining posture, and a baseline reference seating position as per the FMVSS No. 213 protocol. A 2012 mid-size sedan finite element (FE) model was used as the vehicle environment. A standard 3-point lap-shoulder belt system was modeled to restrain the child and the CRS in the left-rear vehicle seat. Additionally, a No-CRS condition was modeled in a reference posture and pre-submarining posture in which the occupant's legs bent over the edge of the rear seat. 12 conditions were simulated in LS-DYNA R10.1.0, and kinematics and kinetics were compared to metrics as per prior literature: 1) maximum femur displacement and pelvis rotation, 2) maximum knee-head excursion and maximum change in torso angle, 3) lap belt trajectory relative to pelvis's coordinate frame. RESULTS: The pre-submarining posture on the HBB depicted submarining in all metrics except for the lap belt trajectory. Only the pre-submarining posture in No-CRS depicted submarining through analysis of all metrics. For this pre-submarining No-CRS condition, the mid-abdominal compression was approximately 5 times greater than the average of the mid abdominal compression depths of all other cases and maximum abdominal pressure was at least 22.9 kPa higher than the rest of the conditions. CONCLUSIONS: The results of this study suggest that metrics used to assess submarining for 6YO pediatric occupants in frontal impacts may need to be updated so that they are more accurate for both simulated and physical studies. In addition, the results of this study could be used to design booster seats that discourage postures that could lead to an increased likelihood of submarining-like characteristics in a frontal crash impact.


Asunto(s)
Accidentes de Tránsito , Cuerpo Humano , Niño , Humanos , Fenómenos Biomecánicos , Postura , Rodilla
3.
Traffic Inj Prev ; 21(sup1): S49-S53, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33095067

RESUMEN

OBJECTIVE: The study quantifies the kinematics of children in booster child restraint systems (CRSs) in various naturalistic seating postures exposed to frontal impacts in a full-vehicle environment, with and without the application of pre-crash automatic emergency braking. METHODS: The PIPER 6YO and 10YO pediatric human body models were positioned in CRSs. The 6YO was restrained on a lowback (LBB) and highback (HBB) booster, while the 10YO was positioned on an LBB and in a NoCRS condition. All simulations used the 3-point seatbelt. The child models were pre-positioned (gravity settled, seatbelt tensioned) in four naturalistic seating postures: leaning-forward, leaning-forward-inward, leaning-forward-outward, and a pre-submarining position, along with a baseline reference seating position. A 2012 Toyota Camry finite element (FE) model was used as the vehicle environment. A standard 3-point lap-shoulder belt system was modeled to restrain the child and CRS in the left-rear vehicle seat. Two vehicle impact cases were considered: with and without a pre-crash AEB. For with-AEB cases, a pre-crash phase was run to incorporate postural changes due to the application of AEB. All seating positions were ultimately subjected to a full-frontal rigid-barrier impact at 35 MPH. A total of 40 conditions were simulated in LS-DYNA. RESULTS: Injury metrics varied widely for both occupants. Shoulder belt slippage was observed for the 6YO leaning-forward-inward on HBB. No head contact was observed for any simulated cases. Forward-leaning and forward-inward-leaning postures generally had greater head excursion across all seating postures. The lap belt rode over the pelvis for pre-submarining postures. Injury metrics for cases with pre-crash AEB were lower compared to their corresponding without-AEB cases. HIC15, head acceleration, upper neck tension force, and upper neck flexion moment were similar or lower for with-AEB scenarios. CONCLUSIONS: Pre-crash AEB reduces the effect of the impact despite the same collision speed as cases without-AEB. This is primarily due to the limited travel distance of the occupant, thus, starting an earlier ride-down during the crash. Moreover, different initial seating postures lead to a wide range of injury exposures. Vehicle and child restraint design should incorporate these seating postures to ensure robust protection of the occupant in a crash.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Automatización/estadística & datos numéricos , Desaceleración , Equipos de Seguridad/estadística & datos numéricos , Sedestación , Fenómenos Biomecánicos , Niño , Sistemas de Retención Infantil , Humanos , Modelos Anatómicos , Cinturones de Seguridad , Heridas y Lesiones/epidemiología , Heridas y Lesiones/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA