Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 43: 441-464, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32283996

RESUMEN

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.


Asunto(s)
Macrodatos , Encéfalo/fisiología , Biología Computacional , Red Nerviosa/fisiología , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Expresión Génica/fisiología , Humanos
2.
PLoS Biol ; 15(12): e2003148, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29244805

RESUMEN

Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Lengua/fisiología , Animales , Quirópteros/anatomía & histología , Método de Montecarlo , Lengua/anatomía & histología , Grabación en Video
3.
J Exp Biol ; 221(Pt 24)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30355612

RESUMEN

To navigate in the natural environment, animals must adapt their locomotion in response to environmental stimuli. The echolocating bat relies on auditory processing of echo returns to represent its surroundings. Recent studies have shown that echo flow patterns influence bat navigation, but the acoustic basis for flight path selection remains unknown. To investigate this problem, we released bats in a flight corridor with walls constructed of adjacent individual wooden poles, which returned cascades of echoes to the flying bat. We manipulated the spacing and echo strength of the poles comprising each corridor side, and predicted that bats would adapt their flight paths to deviate toward the corridor side returning weaker echo cascades. Our results show that the bat's trajectory through the corridor was not affected by the intensity of echo cascades. Instead, bats deviated toward the corridor wall with more sparsely spaced, highly reflective poles, suggesting that pole spacing, rather than echo intensity, influenced bat flight path selection. This result motivated investigation of the neural processing of echo cascades. We measured local evoked auditory responses in the bat inferior colliculus to echo playback recordings from corridor walls constructed of sparsely and densely spaced poles. We predicted that evoked neural responses would be discretely modulated by temporally distinct echoes recorded from the sparsely spaced pole corridor wall, but not by echoes from the more densely spaced corridor wall. The data confirm this prediction and suggest that the bat's temporal resolution of echo cascades may drive its flight behavior in the corridor.


Asunto(s)
Quirópteros/fisiología , Ecolocación , Conducta Predatoria , Animales , Ambiente , Potenciales Evocados Auditivos , Femenino , Vuelo Animal , Colículos Inferiores/fisiología , Masculino
4.
J Acoust Soc Am ; 144(2): 806, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30180698

RESUMEN

In this study, the echolocation and flight behaviors of the Taiwanese leaf-nosed bat (Hipposideros armiger terasensis), which uses constant-frequency (CF) biosonar signals combined with a frequency-modulated (FM) sweep, are compared with those of the big brown bat (Eptesicus fuscus), which uses FM signals alone. The CF-FM bat flew through a corridor bounded by vertical poles on either side, and the inter-pole spacing of the walls was manipulated to create different echo flow conditions. The bat's flight trajectories and echolocation behaviors across corridor conditions were analyzed. Like the big brown bat, the Taiwanese leaf-nosed bat centered its flight trajectory within the corridor when the pole spacing was the same on the two walls. However, the two species showed different flight behaviors when the pole spacing differed on the two walls. While the big brown bat deviated from the corridor center towards the wall with sparse pole spacing, the Taiwanese leaf-nosed bat did not. Further, in comparison to E. fuscus, H. a. terasensis utilized different echolocation patterns showing a prevalence of grouping sounds into clusters of three. These findings indicate that the two species' distinct sonar signal designs contribute to their differences in flight trajectories in a structured corridor.


Asunto(s)
Ecolocación , Vuelo Animal , Animales , Quirópteros/fisiología , Espacios Confinados , Especificidad de la Especie
6.
J Exp Biol ; 218(Pt 22): 3678-88, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26582935

RESUMEN

Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Vuelo Animal , Animales , Conducta Predatoria/fisiología , Sonido
7.
J Exp Biol ; 217(Pt 24): 4356-64, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25394632

RESUMEN

Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment.


Asunto(s)
Quirópteros/fisiología , Ecolocación/fisiología , Vuelo Animal/fisiología , Conducta Predatoria/fisiología , Animales , Percepción Auditiva , Ambiente , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA