Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Immunol ; 161(2): 366-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26482871

RESUMEN

Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetyl-glucosamine-1-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently been identified as the cause of novel primary immunodeficiency with a hyper-IgE like syndrome. Here we report the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, described already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Affected individuals were highly prone to infections, but lack the developmental defects in the nervous and skeletal systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or without increased IgE levels, and with variable forms of developmental defects affecting other organ systems.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Síndromes de Inmunodeficiencia/genética , Infecciones/genética , Mutación , Fosfoglucomutasa/genética , Adulto , Secuencia de Bases , Western Blotting , Células Cultivadas , Análisis Mutacional de ADN , Salud de la Familia , Resultado Fatal , Femenino , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Fosfoglucomutasa/metabolismo , Hermanos
2.
J Allergy Clin Immunol ; 133(5): 1410-9, 1419.e1-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24698316

RESUMEN

BACKGROUND: Recurrent bacterial and fungal infections, eczema, and increased serum IgE levels characterize patients with the hyper-IgE syndrome (HIES). Known genetic causes for HIES are mutations in signal transducer and activator of transcription 3 (STAT3) and dedicator of cytokinesis 8 (DOCK8), which are involved in signal transduction pathways. However, glycosylation defects have not been described in patients with HIES. One crucial enzyme in the glycosylation pathway is phosphoglucomutase 3 (PGM3), which catalyzes a key step in the synthesis of uridine diphosphate N-acetylglucosamine, which is required for the biosynthesis of N-glycans. OBJECTIVE: We sought to elucidate the genetic cause in patients with HIES who do not carry mutations in STAT3 or DOCK8. METHODS: After establishing a linkage interval by means of SNPchip genotyping and homozygosity mapping in 2 families with HIES from Tunisia, mutational analysis was performed with selector-based, high-throughput sequencing. Protein expression was analyzed by means of Western blotting, and glycosylation was profiled by using mass spectrometry. RESULTS: Mutational analysis of candidate genes in an 11.9-Mb linkage region on chromosome 6 shared by 2 multiplex families identified 2 homozygous mutations in PGM3 that segregated with disease status and followed recessive inheritance. The mutations predict amino acid changes in PGM3 (p.Glu340del and p.Leu83Ser). A third homozygous mutation (p.Asp502Tyr) and the p.Leu83Ser variant were identified in 2 other affected families, respectively. These hypomorphic mutations have an effect on the biosynthetic reactions involving uridine diphosphate N-acetylglucosamine. Glycomic analysis revealed an aberrant glycosylation pattern in leukocytes demonstrated by a reduced level of tri-antennary and tetra-antennary N-glycans. T-cell proliferation and differentiation were impaired in patients. Most patients had developmental delay, and many had psychomotor retardation. CONCLUSION: Impairment of PGM3 function leads to a novel primary (inborn) error of development and immunity because biallelic hypomorphic mutations are associated with impaired glycosylation and a hyper-IgE-like phenotype.


Asunto(s)
Cromosomas Humanos Par 6/genética , Enfermedades Genéticas Congénitas/genética , Homocigoto , Inmunidad/genética , Inmunoglobulina E , Síndrome de Job/genética , Mutación Missense , Fosfoglucomutasa/genética , Adulto , Sustitución de Aminoácidos , Proliferación Celular , Niño , Cromosomas Humanos Par 6/metabolismo , Femenino , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/inmunología , Ligamiento Genético , Glicosilación , Humanos , Lactante , Síndrome de Job/enzimología , Síndrome de Job/inmunología , Masculino , Fosfoglucomutasa/inmunología , Fosfoglucomutasa/metabolismo , Linfocitos T/enzimología , Linfocitos T/inmunología , Túnez
3.
Lung Cancer ; 130: 50-58, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30885352

RESUMEN

OBJECTIVES: Non-small cell lung cancer (NSCLC) is a heterogeneous disease with unique combinations of somatic molecular alterations in individual patients, as well as significant differences in populations across the world with regard to mutation spectra and mutation frequencies. Here we aim to describe mutational patterns and linked clinical parameters in a population-based NSCLC cohort. MATERIALS AND METHODS: Using targeted resequencing the mutational status of 82 genes was evaluated in a consecutive Swedish surgical NSCLC cohort, consisting of 352 patient samples from either fresh frozen or formalin fixed paraffin embedded (FFPE) tissues. The panel covers all exons of the 82 genes and utilizes reduced target fragment length and two-strand capture making it compatible with degraded FFPE samples. RESULTS: We obtained a uniform sequencing coverage and mutation load across the fresh frozen and FFPE samples by adaption of sequencing depth and bioinformatic pipeline, thereby avoiding a technical bias between these two sample types. At large, the mutation frequencies resembled the frequencies seen in other western populations, except for a high frequency of KRAS hotspot mutations (43%) in adenocarcinoma patients. Worse overall survival was observed for adenocarcinoma patients with a mutation in either TP53, STK11 or SMARCA4. In the adenocarcinoma KRAS-mutated group poor survival appeared to be linked to concomitant TP53 or STK11 mutations, and not to KRAS mutation as a single aberration. Similar results were seen in the analysis of publicly available data from the cBioPortal. In squamous cell carcinoma a worse prognosis could be observed for patients with MLL2 mutations, while CSMD3 mutations were linked to a better prognosis. CONCLUSION: Here we have evaluated the mutational status of a NSCLC cohort. We could not confirm any survival impact of isolated driver mutations. Instead, concurrent mutations in TP53 and STK11 were shown to confer poor survival in the KRAS-positive adenocarcinoma subgroup.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma/diagnóstico , Adenocarcinoma/mortalidad , Anciano , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Estudios de Cohortes , Exones/genética , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidad , Masculino , Proteínas de la Membrana/genética , Grupos de Población , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Análisis de Supervivencia , Suecia
4.
Cancer Res ; 77(7): 1730-1740, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108514

RESUMEN

The contribution of somatic mutations to metastasis of colorectal cancers is currently unknown. To find mutations involved in the colorectal cancer metastatic process, we performed deep mutational analysis of 676 genes in 107 stages II to IV primary colorectal cancer, of which half had metastasized. The mutation prevalence in the ephrin (EPH) family of tyrosine kinase receptors was 10-fold higher in primary tumors of metastatic colorectal than in nonmetastatic cases and preferentially occurred in stage III and IV tumors. Mutational analyses in situ confirmed expression of mutant EPH receptors. To enable functional studies of EPHB1 mutations, we demonstrated that DLD-1 colorectal cancer cells expressing EPHB1 form aggregates upon coculture with ephrin B1 expressing cells. When mutations in the fibronectin type III and kinase domains of EPHB1 were compared with wild-type EPHB1 in DLD-1 colorectal cancer cells, they decreased ephrin B1-induced compartmentalization. These observations provide a mechanistic link between EPHB receptor mutations and metastasis in colorectal cancer. Cancer Res; 77(7); 1730-40. ©2017 AACR.


Asunto(s)
Neoplasias Colorrectales/patología , Mutación , Metástasis de la Neoplasia , Receptor EphB1/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Dominio de Fibronectina del Tipo III/genética , Humanos , Estadificación de Neoplasias , Proteínas Tirosina Quinasas/genética
5.
N Biotechnol ; 33(3): 311-30, 2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-26514324

RESUMEN

The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.


Asunto(s)
Biotecnología/métodos , ADN/análisis , ADN/genética , Animales , Química Clic , Exoma/genética , Humanos , Espectrometría de Masas , Análisis de Secuencia de ADN
6.
J Mol Diagn ; 17(6): 729-39, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354930

RESUMEN

In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomolecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings.


Asunto(s)
Formaldehído/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación/genética , Neoplasias/genética , Parafina/química , ADN/genética , Humanos , Adhesión en Parafina/métodos , Fijación del Tejido/métodos
7.
J Exp Med ; 212(6): 833-43, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25987724

RESUMEN

NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Quinasa I-kappa B/fisiología , Leucemia Linfocítica Crónica de Células B/metabolismo , FN-kappa B/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Aberraciones Cromosómicas , Estudios de Cohortes , Citoplasma/metabolismo , Análisis Mutacional de ADN , Mutación del Sistema de Lectura , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Quinasa I-kappa B/genética , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B de la Zona Marginal/metabolismo , Linfoma de Células del Manto/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Resultado del Tratamiento
8.
PLoS One ; 9(12): e114901, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25502423

RESUMEN

Primary Immunodeficiencies (PID) are genetically inherited disorders characterized by defects of the immune system, leading to increased susceptibility to infection. Due to the variety of clinical symptoms and the complexity of current diagnostic procedures, accurate diagnosis of PID is often difficult in daily clinical practice. Thanks to the advent of "next generation" sequencing technologies and target enrichment methods, the development of multiplex diagnostic assays is now possible. In this study, we applied a selector-based target enrichment assay to detect disease-causing mutations in 179 known PID genes. The usefulness of this assay for molecular diagnosis of PID was investigated by sequencing DNA from 33 patients, 18 of which had at least one known causal mutation at the onset of the experiment. We were able to identify the disease causing mutations in 60% of the investigated patients, indicating that the majority of PID cases could be resolved using a targeted sequencing approach. Causal mutations identified in the unknown patient samples were located in STAT3, IGLL1, RNF168 and PGM3. Based on our results, we propose a stepwise approach for PID diagnostics, involving targeted resequencing, followed by whole transcriptome and/or whole genome sequencing if causative variants are not found in the targeted exons.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Síndromes de Inmunodeficiencia/genética , Mutación/genética , Transcriptoma/genética , Genoma Humano , Proyecto Mapa de Haplotipos , Humanos , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/patología , Fosfoglucomutasa/genética , Factor de Transcripción STAT3/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Exp Med ; 210(9): 1729-42, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23960188

RESUMEN

DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma samples, somatic and germline mutations were identified in various DNA repair pathways, mainly in diffuse large B cell lymphomas (DLBCLs). Mutations in mismatch repair genes (EXO1, MSH2, and MSH6) were associated with microsatellite instability, increased number of somatic insertions/deletions, and altered mutation signatures in tumors. Somatic mutations in nonhomologous end-joining (NHEJ) genes (DCLRE1C/ARTEMIS, PRKDC/DNA-PKcs, XRCC5/KU80, and XRCC6/KU70) were identified in four DLBCL tumors and cytogenetic analyses revealed that translocations involving the immunoglobulin-heavy chain locus occurred exclusively in NHEJ-mutated samples. The novel mutation targets, CHEK2 and PARP1, were further screened in expanded DLBCL cohorts, and somatic as well as novel and rare germline mutations were identified in 8 and 5% of analyzed tumors, respectively. By correlating defects in a subset of DNA damage response and repair genes with genomic instability events in tumors, we propose that these genes play a role in DLBCL lymphomagenesis.


Asunto(s)
Reparación del ADN/genética , Linfoma de Células B Grandes Difuso/genética , Mutación/genética , Alelos , Quinasa de Punto de Control 2 , Estudios de Cohortes , Reparación del ADN por Unión de Extremidades/genética , Reparación de la Incompatibilidad de ADN/genética , Análisis Mutacional de ADN , Femenino , Sitios Genéticos/genética , Variación Genética , Mutación de Línea Germinal/genética , Humanos , Hibridación Fluorescente in Situ , Masculino , Inestabilidad de Microsatélites , Proteínas Serina-Treonina Quinasas/genética , Análisis de Secuencia de ADN , Translocación Genética
10.
PLoS One ; 7(12): e52750, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300761

RESUMEN

The genomic revolution in oncology will entail mutational analyses of vast numbers of patient-matched tumor and normal tissue samples. This has meant an increased risk of patient sample mix up due to manual handling. Therefore, scalable genotyping and sample identification procedures are essential to pathology biobanks. We have developed an efficient alternative to traditional genotyping methods suited for automated analysis. By targeting 53 prevalent deletions and insertions found in human populations with fluorescent multiplex ligation dependent genome amplification, followed by separation in a capillary sequencer, a peak spectrum is obtained that can be automatically analyzed. 24 tumor-normal patient samples were successfully matched using this method. The potential use of the developed assay for forensic applications is discussed.


Asunto(s)
Técnicas de Genotipaje , Mutación INDEL , Bancos de Tejidos , Automatización de Laboratorios , Secuencia de Bases , Colon/química , Neoplasias Colorrectales/genética , ADN/genética , ADN/aislamiento & purificación , Cartilla de ADN/genética , Femenino , Fijadores/química , Formaldehído/química , Genoma Humano , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , Adhesión en Parafina , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA