Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(2): C606-C621, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189130

RESUMEN

Immune cell-driven pathways are linked to cancer cachexia. Tumor presence is associated with immune cell infiltration whereas cytotoxic chemotherapies reduce immune cell counts. Despite these paradoxical effects, both cancer and chemotherapy can cause cachexia; however, our understanding of immune responses in the cachexia condition with cancer and chemotherapy is largely unknown. We sought to advance our understanding of the immunology underlying cancer and cancer with chemotherapy-induced cachexia. CD2F1 mice were given 106 C26 cells, followed by five doses of 5-fluorouracil (5FU; 30 mg/kg LM, ip) or PBS. Indices of cachexia and tumor (TUM), skeletal muscle (SKM), and adipose tissue (AT) immune cell populations were examined using high-parameter flow cytometry. Although 5FU was able to stunt tumor growth, % body weight loss and muscle mass were not different between C26 and C26 + 5FU. C26 increased CD11b+Ly6g+ and CD11b+Ly6cInt inflammatory myeloid cells in SKM and AT; however, both populations were reduced with C26 + 5FU. tSNE analysis revealed 24 SKM macrophage subsets wherein 8 were changed with C26 or C26 + 5FU. C26 + 5FU increased SKM CD11b-CD11c+ dendritic cells, CD11b-NK1.1+ NK-cells, and CD11b-B220+ B-cells, and reduced Ly6cHiCX3CR1+CD206+CD163IntCD11c-MHCII- infiltrated macrophages and other CD11b+Ly6cHi myeloid cells compared with C26. Both C26 and C26 + 5FU had elevated CD11b+F480+CD206+MHCII- or more specifically Ly6cLoCX3CR1+CD206+CD163IntCD11c-MHCII- profibrotic macrophages. 5FU suppressed tumor growth and decreased SKM and AT inflammatory immune cells without protecting against cachexia suggesting that these cells are not required for wasting. However, profibrotic cells and muscle inflammatory/atrophic signaling appear consistent with cancer- and cancer with chemotherapy-induced wasting and remain potential therapeutic targets.NEW & NOTEWORTHY Despite being an immune-driven condition, our understanding of skeletal muscle and adipose tissue immune cells with cachexia is limited. Here, we identified immune cell populations in tumors, skeletal muscle, and adipose tissue in C26 tumor-bearing mice with/without 5-fluorouracil (5FU). C26 and C26 + 5FU had increased skeletal muscle profibrotic macrophages, but 5FU reduced inflammatory myeloid cells without sparing mass. Tumor presence and chemotherapy have contrasting effects on certain immune cells, which appeared not necessary for wasting.


Asunto(s)
Antineoplásicos , Fluorouracilo , Ratones , Animales , Fluorouracilo/efectos adversos , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Antineoplásicos/farmacología
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G591-G606, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469632

RESUMEN

Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , Mucosa Intestinal , Ratones Endogámicos C57BL , Animales , Femenino , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/patología , Colitis/inmunología , Colitis/microbiología , Alcoholes Grasos/farmacología , Diinos/farmacología , Modelos Animales de Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/inmunología , Colon/microbiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colitis Ulcerosa/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-38270691

RESUMEN

BACKGROUND: Sparstolonin B (SsnB) is characterized as a new toll-like receptor (TLR)-2/4 antagonist. However, the effects of SsnB on different inflammatory diseases have not been systemically reviewed. METHODS: We investigated the effects of SsnB on inflammatory diseases with data mining and network analysis of literature, including frequency description, cluster analysis, association rule mining, functional enrichment, and protein-protein interaction (PPI) mining. RESULTS: A total of 27 experimental reports were included. The ARRIVE 2.0 guidelines were used to evaluate the quality of animal studies. Frequency analysis revealed 13 different diseases (cardio-cerebrovascular system diseases account for 23.53%), 12 pharmacological effects (anti-inflammatory effect accounts for 53.85%), and 67 therapeutic targets. The overview of investigation sequence of SsnB studies was depicted by Sankey diagram. Cluster analysis classified the therapeutic targets for SsnB into four main categories: (1) NF-κB; (2) IL-1ß, IL-6, and TNF-α; (3) TLR2, TLR4, and MyD88; (4) the other targets. Moreover, the Apriori association discovered two main association pairs: (1) TNF-α, IL-1ß, and IL-6 and (2) TLR2, TLR4, and MyD88 (support range 33.33-50%, confidence range 83.33-88.89%). Functional enrichment of the therapeutic targets for SsnB showed that the top enriched items in the biological process were mainly the response to lipopolysaccharide (LPS)/bacterial origin and regulation of cytokine production. Finally, the PPI network and hub gene selection by maximal clique centrality (MCC) algorithm indicated the top ranked proteins were TNF-α, IL-1ß, IL-6, AKT1, PPAR-γ, TLR4, CCL2, and TLR2. CONCLUSION: These results emphasized the importance of TLR2/TLR4-MyD88-NF-κB-IL-1ß/IL-6/TNF-α pathways as therapeutic targets of SsnB in inflammatory diseases.

4.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G318-G333, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489869

RESUMEN

Currently available colorectal cancer (CRC) therapies have limited efficacy and severe adverse effects that may be overcome with the alternative use of natural compounds. We previously reported that panaxynol (PA), a bioactive component in American ginseng, possesses anticancer properties in vitro and suppresses murine colitis through its proapoptotic and anti-inflammatory properties. Because colitis is a predisposing factor of CRC and inflammation is a major driver of CRC, we sought to evaluate the therapeutic potential of PA in CRC. Azoxymethane-dextran sodium sulfate (AOM/DSS) mice (C57BL/6) were administered 2.5 mg/kg PA or vehicle 3 times/wk via oral gavage over 12 wk. PA improved clinical symptoms (P ≤ 0.05) and reduced tumorigenesis (P ≤ 0.05). This improvement may be reflective of PA's restorative effect on intestinal barrier function; PA upregulated the expression of essential tight junction and mucin genes (P ≤ 0.05) and increased the abundance of mucin-producing goblet cells (P ≤ 0.05). Given that macrophages play a substantial role in the pathogenesis of CRC and that we previously demonstrated that PA targets macrophages in colitis, we next assessed macrophages. We show that PA reduces the relative abundance of colonic macrophages within the lamina propria (P ≤ 0.05), and this was consistent with a reduction in the expression of important markers of macrophages and inflammation (P ≤ 0.05). We further confirmed PA's inhibitory effects on macrophages in vitro under CRC conditions (P ≤ 0.05). These results suggest that PA is a promising therapeutic compound to treat CRC and improve clinical symptoms given its ability to inhibit macrophages and modulate the inflammatory environment in the colon.NEW & NOTEWORTHY We report that panaxynol (PA) reduces colorectal cancer (CRC) by improving the colonic and tumor environment. Specifically, we demonstrate that PA improves crypt morphology, upregulates crucial tight junction and mucin genes, and promotes the abundance of mucin-producing goblet cells. Furthermore, PA reduces macrophages and associated inflammation, important drivers of CRC, in the colonic environment. This present study provides novel insights into the potential of PA as a therapeutic agent to ameliorate CRC tumorigenesis.


Asunto(s)
Colitis , Neoplasias Colorrectales , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Inflamación/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Azoximetano/metabolismo , Azoximetano/farmacología , Azoximetano/uso terapéutico , Macrófagos/metabolismo , Neoplasias Colorrectales/metabolismo , Mucinas/metabolismo , Sulfato de Dextran/farmacología
5.
Stat Med ; 42(30): 5616-5629, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37806971

RESUMEN

A wealth of gene expression data generated by high-throughput techniques provides exciting opportunities for studying gene-gene interactions systematically. Gene-gene interactions in a biological system are tightly regulated and are often highly dynamic. The interactions can change flexibly under various internal cellular signals or external stimuli. Previous studies have developed statistical methods to examine these dynamic changes in gene-gene interactions. However, due to the massive number of possible gene combinations that need to be considered in a typical genomic dataset, intensive computation is a common challenge for exploring gene-gene interactions. On the other hand, oftentimes only a small proportion of gene combinations exhibit dynamic co-expression changes. To solve this problem, we propose Bayesian variable selection approaches based on spike-and-slab priors. The proposed algorithms reduce the computational intensity by focusing on identifying subsets of promising gene combinations in the search space. We also adopt a Bayesian multiple hypothesis testing procedure to identify strong dynamic gene co-expression changes. Simulation studies are performed to compare the proposed approaches with existing exhaustive search heuristics. We demonstrate the implementation of our proposed approach to study the association between gene co-expression patterns and overall survival using the RNA-sequencing dataset from The Cancer Genome Atlas breast cancer BRCA-US project.


Asunto(s)
Algoritmos , Genómica , Humanos , Teorema de Bayes , Simulación por Computador , Heurística
6.
Physiol Genomics ; 54(11): 433-442, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121133

RESUMEN

miRNA155 (miR155) has emerged as an important regulator of breast cancer (BrCa) development. Studies have consistently noted an increase in miR155 levels in serum and/or tissues in patients with BrCa. However, what is less clear is whether this increase in miR155 is a reflection of oncogenic or tumor suppressive properties. To study the effects of miR155 in a transgenic model of BrCA, we developed an MMTV-PyMT mouse deficient in miR155 (miR155-/- PyMT). miR155-/- mice (n = 11) exhibited reduced tumor number and volume palpations at ∼14-18 wk of age compared with miR155 sufficient littermates (n = 12). At 19 wk, mammary glands were excised from tumors for RT-PCR, and tumors were counted, measured, and weighed. miR155-/- PyMT mice exhibited reduced tumor volume, number, and weight, which was confirmed by histopathological analysis. There was an increase in apoptosis with miR155 deficiency and a decrease in proliferation. As expected, miR155 deficiency resulted in upregulated gene expression of suppressor of cytokine signaling 1 (Socs1)-its direct target. There was a reduction in gene expression of macrophage markers (CD68, Adgre1, Itgax, Mrc1) with miR-155-/- and this was confirmed with immunofluorescence staining for F4/80. miR155-/- increased expression of M1 macrophage marker Nos2 and reduced expression of M2 macrophage markers IL-10, IL-4, Arg1, and MMP9. Overall, miR155 deficiency reduced BrCA and improved the tumor microenvironment through the reduction of genes associated with protumorigenic processes. However, given the inconsistencies in the literature, additional studies are needed before any attempts are made to harness miR155 as a potential oncogenic or tumor suppressive miRNA.NEW & NOTEWORTHY To examine the effects of miR155 in a transgenic model of breast cancer, we developed an MMTV-PyMT mouse-deficient in miR155. We demonstrate that global loss of miR155 resulted in blunted tumor growth through modulating the tumor microenvironment. Specifically, miR155-deficient mice had smaller and less invasive tumors, an increase in apoptosis and a decrease in proliferation, a reduction in tumor-associated macrophages, and the expression of genes associated with protumoral processes.


Asunto(s)
Metaloproteinasa 9 de la Matriz , MicroARNs , Ratones , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Interleucina-10 , Carga Tumoral , Interleucina-4 , Modelos Animales de Enfermedad , Carcinogénesis , MicroARNs/genética , Microambiente Tumoral
7.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G383-G395, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018819

RESUMEN

Emodin, a natural anthraquinone, has been shown to have antitumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We used a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC [azoxymethane/dextran sodium sulfate (AOM/DSS)]. Emodin was administered orally (40 or 80 mg/kg in AOM/DSS and 80 mg/kg in ApcMin/+) three times a week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (P < 0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower protumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (P < 0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1ß, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (P < 0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target protumor macrophages.NEW & NOTEWORTHY Our study confirms that emodin is an effective primary therapy against the onset of genetic and chemically induced sporadic colorectal cancer. We established that emodin reduces the M2-like protumorigenic macrophages in the tumor microenvironment. Furthermore, we provide evidence that emodin may be acting to antagonize the P2X7 receptor within the bone tissue and consequently decrease the activation of proinflammatory cells, which may have implications for recruitment of cells to the tumor microenvironment.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Emodina , Animales , Azoximetano , Neoplasias del Colon/patología , Neoplasias Colorrectales/patología , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Emodina/metabolismo , Emodina/farmacología , Emodina/uso terapéutico , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Carga Tumoral , Microambiente Tumoral
8.
FASEB J ; 35(9): e21801, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365657

RESUMEN

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in mediating viral entry into host cells. However, whether it contributes to pulmonary hyperinflammation in patients with coronavirus disease 2019 is not well known. In this study, we developed a spike protein-pseudotyped (Spp) lentivirus with the proper tropism of the SARS-CoV-2 spike protein on the surface and determined the distribution of the Spp lentivirus in wild-type C57BL/6J male mice that received an intravenous injection of the virus. Lentiviruses with vesicular stomatitis virus glycoprotein (VSV-G) or with a deletion of the receptor-binding domain (RBD) in the spike protein [Spp (∆RBD)] were used as controls. Two hours postinfection (hpi), there were 27-75 times more viral burden from Spp lentivirus in the lungs than in other organs; there were also about 3-5 times more viral burden from Spp lentivirus than from VSV-G lentivirus in the lungs, liver, kidney, and spleen. Deletion of RBD diminished viral loads in the lungs but not in the heart. Acute pneumonia was observed in animals 24 hpi. Spp lentivirus was mainly found in SPC+ and LDLR+ pneumocytes and macrophages in the lungs. IL6, IL10, CD80, and PPAR-γ were quickly upregulated in response to infection in the lungs as well as in macrophage-like RAW264.7 cells. Furthermore, forced expression of the spike protein in RAW264.7 cells significantly increased the mRNA levels of the same panel of inflammatory factors. Our results demonstrated that the spike protein of SARS-CoV-2 confers the main point of viral entry into the lungs and can induce cellular pathology. Our data also indicate that an alternative ACE2-independent viral entry pathway may be recruited in the heart and aorta.


Asunto(s)
Macrófagos/inmunología , Neumonía Viral/inmunología , Neumonía Viral/patología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enfermedad Aguda , Células Epiteliales Alveolares/virología , Animales , Antígeno B7-1 , Línea Celular , Mediadores de Inflamación , Interleucina-10 , Interleucina-6 , Lentivirus/genética , Lentivirus/aislamiento & purificación , Lentivirus/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Macrófagos/virología , Masculino , Glicoproteínas de Membrana , Ratones , Ratones Endogámicos C57BL , PPAR gamma , Células RAW 264.7 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral
9.
Virol J ; 19(1): 32, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197076

RESUMEN

BACKGROUND: The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma is a major factor that limits the benefits of immunotherapy, especially immune checkpoint blockade. One viable strategy for reverting the immunosuppressive conditions is the use of an oncolytic virus (OV) in combination with other immunotherapy approaches. Infection of PDAC cells with a robust OV can change the tumor microenvironment and increase tumor antigen release by its lytic activities. These changes in the tumor may improve responses to immunotherapy, including immune checkpoint blockade. However, a more potent OV may be required for efficiently infecting pancreatic tumors that may be resistant to OV. METHODS: Vesicular stomatitis virus, a rapid replicating OV, was armed to express the Smac protein during virus infection (VSV-S). Adaptation by limited dilution largely increased the selective infection of pancreatic cancer cells by VSV-S. The engineered OV was propagated to a large quantity and evaluated for their antitumor activities in an animal model. RESULTS: In a syngeneic KPC model, intratumoral injection of VSV-S inhibited tumor growth, and induced increasing tumor infiltration of neutrophils and elimination of myeloid derived suppressor cells and macrophages in the tumor. More importantly, M2-like macrophages were eliminated preferentially over those with an M1 phenotype. Reduced levels of arginase 1, TGF-ß and IL-10 in the tumor also provided evidence for reversion of the immunosuppressive conditions by VSV-S infection. In several cases, tumors were completely cleared by VSV-S treatment, especially when combined with anti-PD-1 therapy. A long-term survival of 44% was achieved. CONCLUSIONS: The improved OV, VSV-S, was shown to drastically alter the immune suppressive tumor microenvironment when intratumorally injected. Our results suggest that the combination of potent OV treatment with immune checkpoint blockade may be a promising strategy to treat pancreatic cancer more effectively.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Estomatitis Vesicular , Animales , Línea Celular Tumoral , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Virus de la Estomatitis Vesicular Indiana/genética
10.
BMC Pulm Med ; 22(1): 27, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996416

RESUMEN

BACKGROUND: Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS: We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS: Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION: Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Gefitinib/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , ARN Circular
11.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897675

RESUMEN

Approximately 75% of diagnosed breast cancer tumors are estrogen-receptor-positive tumors and are associated with a better prognosis due to response to hormonal therapies. However, around 40% of patients relapse after hormonal therapies. Genomic analysis of gene expression profiles in primary breast cancers and tamoxifen-resistant cell lines suggested the potential role of miR-489 in the regulation of estrogen signaling and development of tamoxifen resistance. Our in vitro analysis showed that loss of miR-489 expression promoted tamoxifen resistance, while overexpression of miR-489 in tamoxifen-resistant cells restored tamoxifen sensitivity. Mechanistically, we found that miR-489 is an estrogen-regulated miRNA that negatively regulates estrogen receptor signaling by using at least the following two mechanisms: (i) modulation of the ER phosphorylation status by inhibiting MAPK and AKT kinase activities; (ii) regulation of nuclear-to-cytosol translocation of estrogen receptor α (ERα) by decreasing p38 expression and consequently ER phosphorylation. In addition, miR-489 can break the positive feed-forward loop between the estrogen-Erα axis and p38 MAPK in breast cancer cells, which is necessary for its function as a transcription factor. Overall, our study unveiled the underlying molecular mechanism by which miR-489 regulates an estrogen signaling pathway through a negative feedback loop and uncovered its role in both the development of and overcoming of tamoxifen resistance in breast cancers.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Retroalimentación , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Recurrencia Local de Neoplasia/genética , Transducción de Señal , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
12.
J Cell Mol Med ; 25(1): 535-548, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33210462

RESUMEN

microRNA-155 (miR155) is pro-atherogenic; however, its role in vascular calcification is unknown. In this study, we aim to examine whether miR155 regulates vascular calcification and to understand the underlying mechanism. Quantitative real-time PCR showed that miR155 is highly expressed in human calcific carotid tissue and positively correlated with the expression of osteogenic genes. Wound-healing assay and TUNEL staining showed deletion of miR155 inhibited vascular smooth muscle cell (VSMC) migration and apoptosis. miR155 deficiency attenuated calcification of cultured mouse VSMCs and aortic rings induced by calcification medium, whereas miR155 overexpression promoted VSMC calcification. Compared with wild-type mice, miR155-/- mice showed significant resistance to vitamin D3 induced vascular calcification. Protein analysis showed that miR155 deficiency alleviated the reduction of Rictor, increased phosphorylation of Akt at S473 and accelerated phosphorylation and degradation of FOXO3a in cultured VSMCs and in the aortas of vitamin D3-treated mice. A PI3K inhibitor that suppresses Akt phosphorylation increased, whereas a pan-caspase inhibitor that suppresses apoptosis reduced VSMC calcification; and both inhibitors diminished the protective effects of miR155 deficiency on VSMC calcification. In conclusion, miR155 deficiency attenuates vascular calcification by increasing Akt phosphorylation and FOXO3a degradation, and thus reducing VSMC apoptosis induced by calcification medium.


Asunto(s)
MicroARNs/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología , Transducción de Señal/fisiología
13.
J Cell Physiol ; 236(11): 7440-7449, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34041746

RESUMEN

Cardiac fibrosis accompanies a number of pathological conditions and results in altered myocardial structure, biomechanical properties and function. The signaling networks leading to fibrosis are complex, contributing to the general lack of progress in identifying effective therapeutic approaches to prevent or reverse this condition. Several studies have shown protective effects of emodin, a plant-derived anthraquinone, in animal models of fibrosis. A number of questions remain regarding the mechanisms whereby emodin impacts fibrosis. Transforming growth factor beta 1 (TGF-ß1) is a potent stimulus of fibrosis and fibroblast activation. In the present study, experiments were performed to evaluate the effects of emodin on activation and function of cardiac fibroblasts following treatment with TGF-ß1. We demonstrate that emodin attenuates TGF-ß1-induced fibroblast activation and collagen accumulation in vitro. Emodin also inhibits activation of several canonical (SMAD2/3) and noncanonical (Erk1/2) TGF-ß signaling pathways, while activating the p38 pathway. These results suggest that emodin may provide an effective therapeutic agent for fibrosis that functions via specific TGF-ß signaling pathways.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Emodina/farmacología , Fibroblastos/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Animales , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/citología , Ratas Sprague-Dawley , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G712-G719, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471628

RESUMEN

Intestinal mucositis remains one of the most debilitating side effects related to chemotherapy. The onset and persistence of mucositis is an intricate physiological process involving cross-communication between the specific chemotherapeutic drug, the immune system, and gut microbes that results in a loss of mucosal integrity leading to gut-barrier dysfunction. Intestinal mucositis has a severe impact on a patient's quality of life and negatively influences the outcome of treatment. Most importantly, intestinal mucositis is a major contributor to the decreased survival rates and early onset of death associated with certain chemotherapy treatments. Understanding the pathophysiology and symptomology of intestinal mucositis is important in reducing the negative consequences of this condition. Prophylaxis, early diagnosis, and proper symptom management are essential to improved survival outcomes in patients with cancer. This review focuses on the pathobiology of intestinal mucositis that accompanies chemotherapy treatments. In addition, we will discuss the therapeutic potential of select strategies that have shown promise in mitigating chemotherapies' off-target effects without hampering their anticancer efficacy.NEW & NOTEWORTHY Intestinal mucositis, or damage to the intestinal mucosa, is a common side effect of chemotherapy. In this review, we describe the pathobiology of intestinal mucositis that is associated with chemotherapy treatments. In addition, we discuss the efficacy of several potential therapeutic strategies that have shown some potential in alleviating chemotherapies' off-target effects.


Asunto(s)
Antineoplásicos/efectos adversos , Mucosa Intestinal/efectos de los fármacos , Mucositis/inducido químicamente , Humanos
15.
Adv Funct Mater ; 31(30)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34421476

RESUMEN

Recently discovered "Trim-Away" mechanism opens a new window for fast and selective degradation of endogenous proteins. However, the in vivo and clinical application of this approach is stuck by the requirement of special skills and equipment needed for the intracellular delivery of antibodies. Hereby, an antibody conjugated polymer nanogel system, Nano-ERASER, for intracellular delivery and release of antibody, and degradation of a specific endogenous protein has been developed. After being delivered into cells, the antibody is released and forms complex with its target protein, and subsequently binds to the Fc receptor of TRIM21. The resulted complex of target protein/antibody/TRIM21 is then degraded by the proteasome. The efficacy of Nano-ERASER has been validated by depleting GFP protein in a GFP expressing cell line. Furthermore, Nano-ERASER successfully degrades COPZ1, a vital protein for cancer cells, and kills those cells while sparing normal cells. Benefit from its convenience and targeted delivery merit, Nano-ERASER technique is promising in providing a reliable tool for endogenous protein function study as well as paves the way for novel antibody-based Trim-Away therapeutic modalities for cancer and other diseases.

16.
Bioorg Chem ; 112: 104925, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022708

RESUMEN

Antibiotic resistance and emerging viral pandemics have posed an urgent need for new anti-infective drugs. By screening our microbial extract library against the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the notorious ESKAPE pathogens, an active fraction was identified and purified, leading to an initial isolation of adipostatins A (1) and B (2). In order to diversify the chemical structures of adipostatins toward enhanced biological activities, a type III polyketide synthase was identified from the native producer, Streptomyces davawensis DSM101723, and was subsequently expressed in an E. coli host, resulting in the isolation of nine additional adipostatins 3-11, including two new analogs (9 and 11). The structures of 1-11 were established by HRMS, NMR, and chemical derivatization, including using a microgram-scale meta-chloroperoxybenzoic acid epoxidation-MS/MS analysis to unambiguously determine the double bond position in the alkyl chain. The present study discovered SARS-CoV-2 main protease inhibitory activity for the class of adipostatins for the first time. Several of the adipostatins isolated also exhibited antimicrobial activity against selected ESKAPE pathogens.


Asunto(s)
Aciltransferasas/metabolismo , Antiinfecciosos/química , Proteínas Bacterianas/metabolismo , Resorcinoles/química , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/clasificación , Aciltransferasas/genética , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , COVID-19/patología , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Resorcinoles/aislamiento & purificación , Resorcinoles/metabolismo , Resorcinoles/farmacología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Streptomyces/enzimología , Espectrometría de Masas en Tándem
17.
Mol Ther ; 28(1): 202-216, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31604677

RESUMEN

Macrophages play a crucial role in the pathogenesis of atherosclerosis, but the molecular mechanisms remain poorly understood. Here we show that microRNA-34a (miR-34a) is a key regulator of macrophage cholesterol efflux and reverse cholesterol transport by modulating ATP-binding cassette transporters ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1). miR-34a also regulates M1 and M2 macrophage polarization via liver X receptor α. Furthermore, global loss of miR-34a reduces intestinal cholesterol or fat absorption by inhibiting cytochrome P450 enzymes CYP7A1 and sterol 12α-hydroxylase (CYP8B1). Consistent with these findings, macrophage-selective or global ablation of miR-34a markedly inhibits the development of atherosclerosis. Finally, therapeutic inhibition of miR-34a promotes atherosclerosis regression and reverses diet-induced metabolic disorders. Our studies outline a central role of miR-34a in regulating macrophage cholesterol efflux, inflammation, and atherosclerosis, suggesting that miR-34a is a promising target for treatment of cardiometabolic diseases.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Animales , Polaridad Celular/genética , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , MicroARNs/genética , Células RAW 264.7 , Células THP-1 , Transfección
18.
Biol Pharm Bull ; 44(7): 976-983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193693

RESUMEN

Pyoluteorin is a natural occurring antibiotic and its anti-tumor activity has rarely been reported. This study aims to investigate the anti-tumor effects of pyoluteorin on human non-small cell lung cancer (NSCLC) cells. The cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was determined through caspase3 activity assay and immunoblotting. Autophagy was measured by transmission electron microscope (TEM) and immunostaining. The autophagy-related proteins were detected through immunoblotting. We found that pyoluteorin showed significant anti-tumor effects on human NSCLC cell lines H1299 (IC50 = 1.57 µM) and H2030 (IC50 = 1.94 µM). Moreover, pyoluteorin could induce apoptosis and autophagy as evidence by the upregulation of caspase3 activity, the accumulation of LC3 and expression of apoptosis or autophagy related proteins. In addition, pyoluteorin induced autophagy through c-Jun N-terminal kinase/B-cell lymphoma-2 (JNK/Bcl-2) signal pathway. Blocking JNK/Bcl-2 pathway significantly attenuated pyoluteorin-induced autophagy. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) or Beclin1 knockout greatly promoted pyoluteorin-induced apoptosis and cell death. Our results showed that pyoluteorin could induce both apoptosis and autophagy in human NSCLC cells. Combination of pyoluteorin with autophagy inhibitior significantly promoted pyoluteorin-induced apoptosis and may be a potential anticancer strategy in the NSCLC therapy.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Fenoles/farmacología , Pirroles/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Beclina-1/genética , Beclina-1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
19.
Biol Pharm Bull ; 44(7): 992-998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193694

RESUMEN

The RAS protein activator like 2 (Rasal2) has been reported to be a tumor suppressor in variety of cancers; while an oncogenic protein in ovarian cancer and triple negative breast cancer (TNBC). However, the exact role of Rasal2 in non-small cell lung cancer (NSCLC) is lacking. This study aimed to investigate the role of Rasal2 in NSCLC and the underlying mechanisms. Rasal2 expression level was measured in NSCLC tissue and cells by using quantitative (q)-PCR and immunoblotting analysis. The clinical implication of Rasal2 in NSCLC patients was also analyzed. The function role of Rasal2 in NSCLC cells were measured by small interfering RNA (si-RNA), immunostaining, transwell assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Low Rasal2 expression level was observed in human NSCLC tissue and cell lines and significantly related to tumor thickness, ulceration and TNM staging in NSCLC patients. Rasal2 knockdown significantly increased NSCLC cell invasion and migration. Mechanistically, we showed that Rasal2 knockdown significantly increased the phosphorylation level of extracellular signal-regulated kinase (ERK)/Raf1/mitogen-activated protein extracellular kinase (MEK) thus activated Ras/ERK signal pathway. Thus, our data showed that Rasal2 is downregulated in NSCLC cells and act as an epithelial-mesenchymal transition (EMT) and metastasis suppressor through the Ras/ERK pathway. Rasal2 may be a prognostic biomarker for NSCLC in the future.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Pulmonares/patología , Anciano , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino
20.
Am J Physiol Endocrinol Metab ; 319(1): E197-E202, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501731

RESUMEN

The pandemic of coronavirus disease (COVID-19) has become a global threat to public health. Functional impairments in multiple organs have been reported in COVID-19, including lungs, heart, kidney, liver, brain, and vascular system. Patients with metabolic-associated preconditions, such as hypertension, obesity, and diabetes, are susceptible to experiencing severe symptoms. The recent emerging evidence of coagulation disorders in COVID-19 suggests that vasculopathy appears to be an independent risk factor promoting disease severity and mortality of affected patients. We recently found that the decreased levels of low-density lipoprotein cholesterols (LDL-c) correlate with disease severity in COVID-19 patients, indicating pathological interactions between dyslipidemia and vasculopothy in patients with COVID-19. However, this clinical manifestation has been unintentionally underestimated by physicians and scientific communities. As metabolic-associated morbidities are generally accompanied with endothelial cell (EC) dysfunctions, these pre-existing conditions may make ECs more vulnerable to SARS-CoV-2 attack. In this mini-review, we summarize the metabolic and vascular manifestations of COVID-19 with an emphasis on the association between changes in LDL-c levels and the development of severe symptoms as well as the pathophysiologic mechanisms underlying the synergistic effect of LDL-c and SARS-CoV-2 on EC injuries and vasculopathy.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Pandemias , Neumonía Viral , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Betacoronavirus , COVID-19 , China , Colesterol , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA