Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Toxicol ; 39(2): 626-642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37555770

RESUMEN

As one of the most common messenger ribonucleic acid modifications in eukaryotic organisms, N6-methyladenosine (m6A) is involved in a wide variety of biological functions. The imbalance of m6A RNA modification may be linked to cancer and other disorders, according to a growing body of studies. Its effects on clear cell renal cell carcinoma (KIRC) have not been well discussed, though. Here, we acquired the expression patterns of 23 important regulators of m6A RNA modification and assess how they might fare in KIRC. We observed that 17 major m6A RNA modification regulatory factors had a substantial predictive influence on KIRC. Using the "ConsensusCluster" program, we defined two groupings (Cluster 1 and Cluster 2) depending on the expression of the aforementioned 17 key m6A RNA methylation regulators. The Cluster 2 has a less favorable outcome and is strongly related with a lesser immune microenvironment, according to the findings. We also developed a strong risk profile for three m6A RNA modifiers (METTL14, YTHDF1, and LRPPRC) using multivariate Cox regression analysis. According to further research, the aforementioned risk profile could serve as an independent predicting factor for KIRC, and the chemotherapy response sensitivity was analyzed between two risk groups. Moreover, to effectively forecast the future outlook of KIRC clients, we established a novel prognostic approach according to gender, age, histopathological level, clinical stage, and risk score. Finally, the function of hub gene METTL14 was validated by cell proliferation and subcutaneous graft tumor in mice. In conclusion, we discovered that m6A RNA modifiers play an important role in controlling KIRC and created a viable risk profile as a marker of prediction for KIRC clients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/genética , ARN , Neoplasias Renales/genética , Inmunidad , Microambiente Tumoral
2.
Appl Opt ; 62(14): 3535-3541, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37706966

RESUMEN

We report on a laser-diode (LD)-pumped master-oscillator power amplifier (MOPA) mid-infrared laser system based on an LD side-pumped Er:YSGG seed laser that can operate in both free-running and Q-switched regimes. In the free-running mode of the seed laser, the maximum amplified single-pulse energy was 83.4 mJ. In Q-switched mode of the seed laser, a maximum single-pulse energy of 7.8 mJ was achieved at 100 Hz repetition rate with the pulse width of 90 ns, corresponding to the peak power of 86.7 kW and the single-pass amplification factor of 1.66. The results indicate that the LD side-pumped MOPA structure is an effective way to realize a nanosecond ∼3µm mid-infrared laser with high repetition rate and high pulse energy.

3.
Opt Express ; 30(10): 17604-17613, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221579

RESUMEN

We report on a quasi-continuous Er:YAG planar waveguide laser operated at 2.94 µm based on the major oscillator power amplification configuration. With the total pump peak power of 32.01 kW, a maximum output peak power of 1.14 kW was obtained at the seed injection peak power of 184.4 W operated at 400µs, 40 Hz. Furthermore, the numerical simulation results indicate that better performance of the laser could be obtained with the higher injected seed laser power. To the best of our knowledge, this is the first experimental demonstration of 2.94 µm planar waveguide laser with an Er doped host material.

4.
Opt Express ; 27(15): 20282-20289, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510125

RESUMEN

A 208 W all-solid-state modulated-longitudinal-mode quasi-continuous-wave sodium guide star (SGS) laser was developed by sum-frequency of a 1064 nm laser and a 1319 nm laser. The laser contained two spectral lines separated by 1.72 GHz for re-pumping the sodium atoms. To suppress absorption saturation effect of the sodium atoms induced by the high light intensity, we used a white noise generator to modulate the 1064 nm single frequency seed laser in the frequency domain. The line width of the modulated-longitudinal-mode 589 nm laser was maximally broadened to 0.74 GHz compared to the initial line width of ~0.30 GHz. A bright SGS with photon return flux of 56800 photons/s/cm2 during the pulse length was obtained.

5.
Rev Sci Instrum ; 85(1): 013105, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24517743

RESUMEN

In order to improve the ability and accuracy of measuring the temporal-spatial distribution of the intensity of a large-size, high-energy laser beam, a novel array detecting method based on diffuse transmission sampling is proposed. The measurement principle and the design of the sampling and attenuating unit are presented. High-temperature-resistant diffuse transmission material is used to sample and attenuate a high energy laser beam. Pure copper, whose surface is first sand-blasted and then gold-plated, is applied to scatter the incident high-energy laser beam. The formula for the attenuation ratio was derived in detail. We developed two large-aperture array detectors with spatial resolution of 5 mm, spatial duty ratio of 20%, and useable angle range of ±30° without varying the responsivity, the non-uniformity in the laser profile measurement is below 1%, and the repeatability error in the laser power measurement is approximately 1%. The maximal energy density that the array detector can endure is more than 10 kJ/cm(2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA