Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 95(1): e28134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36086941

RESUMEN

Coronavirus disease 2019 (COVID-19) is associated with autoimmune features and autoantibody production in a small subset of the population. Pre-existing neutralizing antitype I interferons (IFNs) autoantibodies are related to the severity of COVID-19. Plasma levels of IgG and IgM against 12 viral antigens and 103 self-antigens were evaluated using an antibody protein array in patients with severe/critical or mild/moderate COVID-19 disease and uninfected controls. Patients exhibited increased IgGs against Severe acute respiratory syndrome coronavirus-2 proteins compared to controls, but no difference was observed in the two patient groups. 78% autoreactive IgGs and 93% autoreactive IgMs were increased in patients versus controls. There was no difference in the plasma levels of anti-type I IFN autoantibodies or neutralizing anti-type I IFN activity of plasma samples from the two patient groups. Increased anti-type I IFN IgGs were correlated with higher lymphocyte accounts, suggesting a role of nonpathogenic autoantibodies. Notably, among the 115 antibodies tested, only plasma levels of IgGs against human coronavirus (HCOV)-229E and HCOV-NL63 spike proteins were associated with mild disease outcome. COVID-19 was associated with a bystander polyclonal autoreactive B cell activation, but none of the autoantibody levels were linked to disease severity. Long-term humoral immunity against HCOV-22E and HCOV-NL63 spike protein was associated with mild disease outcome. Understanding the mechanism of life-threatening COVID-19 is critical to reducing mortality and morbidity.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Interferón Tipo I , Humanos , SARS-CoV-2 , Autoanticuerpos , Gravedad del Paciente , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales
2.
J Immunol ; 206(1): 59-66, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268481

RESUMEN

Friend leukemia virus integration 1 (Fli-1) is an ETS transcription factor and a critical regulator of inflammatory mediators, including MCP-1, CCL5, IL-6, G-CSF, CXCL2, and caspase-1. GM-CSF is a regulator of granulocyte and macrophage lineage differentiation and a key player in the pathogenesis of inflammatory/autoimmune diseases. In this study, we demonstrated that Fli-1 regulates the expression of GM-CSF in both T cells and endothelial cells. The expression of GM-CSF was significantly reduced in T cells and endothelial cells when Fli-1 was reduced. We found that Fli-1 binds directly to the GM-CSF promoter using chromatin immunoprecipitation assay. Transient transfection assays indicated that Fli-1 drives transcription from the GM-CSF promoter in a dose-dependent manner, and mutation of the Fli-1 DNA binding domain resulted in a significant loss of transcriptional activation. Mutation of a known phosphorylation site within the Fli-1 protein led to a significant increase in GM-CSF promoter activation. Thus, direct binding to the promoter and phosphorylation are two important mechanisms behind Fli-1-driven activation of the GM-CSF promoter. In addition, Fli-1 regulates GM-CSF expression in an additive manner with another transcription factor Sp1. Finally, we demonstrated that a low dose of a chemotherapeutic drug, camptothecin, inhibited expression of Fli-1 and reduced GM-CSF production in human T cells. These results demonstrate novel mechanisms for regulating the expression of GM-CSF and suggest that Fli-1 is a critical druggable regulator of inflammation and immunity.


Asunto(s)
Endotelio/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Linfocitos T/fisiología , Animales , Camptotecina/farmacología , Endotelio/patología , Regulación de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Humanos , Células Jurkat , Ratones , Terapia Molecular Dirigida , Células 3T3 NIH , Regiones Promotoras Genéticas/genética , Proteína Proto-Oncogénica c-fli-1/genética , ARN Interferente Pequeño/genética , Factor de Transcripción Sp1/genética , Linfocitos T/efectos de los fármacos , Inhibidores de Topoisomerasa I/farmacología
3.
Mol Ther ; 30(4): 1451-1464, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35038582

RESUMEN

Brain pericytes regulate cerebral blood flow, maintain the integrity of the blood-brain barrier (BBB), and facilitate the removal of amyloid ß (Aß), which is critical to healthy brain activity. Pericyte loss has been observed in brains from patients with Alzheimer's disease (AD) and animal models. Our previous data demonstrated that friend leukemia virus integration 1 (Fli-1), an erythroblast transformation-specific (ETS) transcription factor, governs pericyte viability in murine sepsis; however, the role of Fli-1 and its impact on pericyte loss in AD remain unknown. Here, we demonstrated that Fli-1 expression was up-regulated in postmortem brains from a cohort of human AD donors and in 5xFAD mice, which corresponded with a decreased pericyte number, elevated inflammatory mediators, and increased Aß accumulation compared with cognitively normal individuals and wild-type (WT) mice. Antisense oligonucleotide Fli-1 Gapmer administered via intrahippocampal injection decelerated pericyte loss, decreased inflammatory response, ameliorated cognitive deficits, improved BBB dysfunction, and reduced Aß deposition in 5xFAD mice. Fli-1 Gapmer-mediated inhibition of Fli-1 protected against Aß accumulation-induced human brain pericyte apoptosis in vitro. Overall, these studies indicate that Fli-1 contributes to pericyte loss, inflammatory response, Aß deposition, vascular dysfunction, and cognitive decline, and suggest that inhibition of Fli-1 may represent novel therapeutic strategies for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Proteína Proto-Oncogénica c-fli-1/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Cognición , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Humanos , Ratones , Ratones Transgénicos , Pericitos/metabolismo
4.
Mol Ther ; 30(7): 2618-2632, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331906

RESUMEN

Sepsis-associated encephalopathy (SAE) is characterized by acute and diffuse brain dysfunction and correlates with long-term cognitive impairments with no targeted therapy. We used a mouse model of sepsis-related cognitive impairment to examine the role of lncRNA nuclear enriched abundant transcript 1 (Neat1) in SAE. We observed that Neat1 expression was increased in neuronal cells from septic mice and that it directly interacts with hemoglobin subunit beta (Hbb), preventing its degradation. The Neat1/Hbb axis suppressed postsynaptic density protein 95 (PSD-95) levels and decreased dendritic spine density. Neat1 knockout mice exhibited decreased Hbb levels, which resulted in increased PSD-95 levels, increased neuronal dendritic spine density, and decreased anxiety and memory impairment. Neat1 silencing via the antisense oligonucleotide GapmeR ameliorated anxiety-like behavior and cognitive impairment post-sepsis. In conclusion, we uncovered a previously unknown mechanism of the Neat1/Hbb axis in regulating neuronal dysfunction, which may lead to a novel treatment strategy for SAE.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sepsis , Animales , Modelos Animales de Enfermedad , Subunidades de Hemoglobina , Ratones , Ratones Noqueados , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sepsis/complicaciones , Sepsis/genética
5.
J Autoimmun ; 132: 102896, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029717

RESUMEN

Coronavirus disease (COVID-19) caused by SARS-CoV-2 virus is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production in a small subset of patients. Pre-exiting neutralizing autoantibodies against type I interferons (IFNs) are associated with COVID-19 disease severity. In this case report, plasma levels of IgG against type I interferons (IFNs) were increased specifically among the 103 autoantibodies tested following the second shot of COVID-19 vaccine BNT162b2 compared to pre-vaccination and further increased following the third shot of BNT162b2 in a healthy woman. Unlike COVID-19 mediated autoimmune responses, vaccination in this healthy woman did not induce autoantibodies against autoantigens associated with autoimmune diseases. Importantly, IFN-α-2a-induced STAT1 responses in human PBMCs in vitro were suppressed by adding plasma samples from the study subject post- but not pre-vaccination. After the second dose of vaccine, the study subject exhibited severe dermatitis for about six months and responded to treatments with Betamethasone Dipropionate Ointment and antihistamines for about one month. Immune responses to type I IFN can be double-edged swords in enhancing vaccine efficacy and immune responses to infectious diseases, as well as accelerating chronic disease pathogenesis (e.g., chronic viral infections and autoimmune diseases). This case highlights the BNT162b2-induced neutralizing anti-type I IFN autoantibody production, which may affect immune functions in a small subset of general population and patients with some chronic diseases.


Asunto(s)
Enfermedades Autoinmunes , Vacunas contra la COVID-19 , COVID-19 , Interferón Tipo I , Femenino , Humanos , Autoanticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas de ARNm
6.
Exp Eye Res ; 224: 109250, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122624

RESUMEN

Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg2+-dependent neutral sphingomyelinase (NSMase). The purposes of the current study were to determine the localization of SMases and their substrates in the retina and optic nerve head and to investigate the effects of ocular hypertension and ischemia on ASMase and NSMase activities. Tissue and cellular localization of ASMase and NSMase were determined by immunofluorescence imaging. Tissue localization of sphingomyelin in retinas was further determined by Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging. Tissue levels of sphingomyelins and ceramide were determined by liquid chromatography with tandem mass spectrometry. Sphingomyelinase activities under basal conditions and following acute ischemic and ocular hypotensive stress were measured using the Amplex Red Sphingomyelinase Assay Kit. Our data show that ASMase is in the optic nerve head and the retinal ganglion cell layer. NSMase is in the optic nerve head, photoreceptor and retinal ganglion cell layers. Both ASMase and NSMase were identified in human induced pluripotent stem cell-derived retinal ganglion cells and optic nerve head astrocytes. The retina and optic nerve head each exhibited unique distribution of sphingomyelins with the abundance of very long chain species being higher in the optic nerve head than in the retina. Basal activities for ASMase in retinas and optic nerve heads were 54.98 ± 2.5 and 95.6 ± 19.5 mU/mg protein, respectively. Ocular ischemia significantly increased ASMase activity to 86.2 ± 15.3 mU/mg protein in retinas (P = 0.03) but not in optic nerve heads (81.1 ± 15.3 mU/mg protein). Ocular hypertension significantly increased ASMase activity to 121.6 ± 7.3 mU/mg protein in retinas (P < 0.001) and 267.0 ± 66.3 mU/mg protein in optic nerve heads (P = 0.03). Basal activities for NSMase in retinas and optic nerve heads were 12.3 ± 2.1 and 37.9 ± 8.7 mU/mg protein, respectively. No significant change in NSMase activity was measured following ocular ischemia or hypertension. Our results provide evidence that both ASMase and NSMase are expressed in retinas and optic nerve heads; however, basal ASMase activity is significantly higher than NSMase activity in retinas and optic nerve heads. In addition, only ASMase activity was significantly increased in ocular ischemia or hypertension. These data support a role for ASMase-mediated sphingolipid metabolism in the development of retinal ischemic and hypertensive injuries.


Asunto(s)
Hipertensión , Células Madre Pluripotentes Inducidas , Hipertensión Ocular , Disco Óptico , Humanos , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacología , Disco Óptico/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Ceramidas/metabolismo , Citocinas , Isquemia
7.
Mol Ther ; 29(3): 1294-1311, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279722

RESUMEN

Tissue-resident macrophages (TRMs) are sentinel cells for maintaining tissue homeostasis and organ function. In this study, we discovered that lipopolysaccharide (LPS) administration dramatically reduced TRM populations and suppressed their self-renewal capacities in multiple organs. Using loss- and gain-of-function approaches, we define Sectm1a as a novel regulator of TRM self-renewal. Specifically, at the earlier stage of endotoxemia, Sectm1a deficiency exaggerated acute inflammation-induced reduction of TRM numbers in multiple organs by suppressing their proliferation, which was associated with more infiltrations of inflammatory monocytes/neutrophils and more serious organ damage. By contrast, administration of recombinant Sectm1a enhanced TRM populations and improved animal survival upon endotoxin challenge. Mechanistically, we identified that Sectm1a-induced upregulation in the self-renewal capacity of TRM is dependent on GITR-activated T helper cell expansion and cytokine production. Meanwhile, we found that TRMs may play an important role in protecting local vascular integrity during endotoxemia. Our study demonstrates that Sectm1a contributes to stabling TRM populations through maintaining their self-renewal capacities, which benefits the host immune response to acute inflammation. Therefore, Sectm1a may serve as a new therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Memoria Inmunológica/inmunología , Inflamación/complicaciones , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Monocitos/inmunología , Insuficiencia Multiorgánica/prevención & control , Animales , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Homeostasis , Proteínas de la Membrana/genética , Ratones , Insuficiencia Multiorgánica/etiología , Linfocitos T Colaboradores-Inductores/inmunología
8.
Lab Invest ; 101(5): 625-635, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33446892

RESUMEN

Pericytes apposed to the capillary endothelium are known to stabilize and promote endothelial integrity. Recent studies indicate that lung pericytes play a prominent role in lung physiology, and they are involved in the development of various lung diseases including lung injury in sepsis, pulmonary fibrosis, asthma, and pulmonary hypertension. Accordingly, human lung pericyte studies are important for understanding the mechanistic basis of lung physiology and pathophysiology; however, human lung pericytes can only be cultured for a few passages and no immortalized human lung pericyte cell line has been established so far. Thus, our study aims to establish an immortalized human lung pericyte cell line. Developed using SV40 large T antigen lentivirus, immortalized pericytes exhibit stable SV40T expression, sustained proliferation, and have significantly higher telomerase activity compared to normal human lung pericytes. In addition, these cells retained pericyte characteristics, marked by similar morphology, and expression of pericyte cell surface markers such as PDGFRß, NG2, CD44, CD146, CD90, and CD73. Furthermore, similar to that of primary pericytes, immortalized pericytes promoted endothelial cell tube formation and responded to different stimuli. Our previous data showed that friend leukemia virus integration 1 (Fli-1), a member of the ETS transcription factor family, is a key regulator that modulates inflammatory responses in mouse lung pericytes. We further demonstrated that Fli-1 regulates inflammatory responses in immortalized human lung pericytes. To summarize, we successfully established an immortalized human lung pericyte cell line, which serves as a promising tool for in vitro pericyte studies to understand human lung pericyte physiology and pathophysiology.


Asunto(s)
Línea Celular , Pulmón/citología , Pericitos , Proteínas de Microfilamentos/metabolismo , Transactivadores/metabolismo
9.
J Infect Dis ; 222(6): 1037-1045, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32285112

RESUMEN

BACKGROUND: Sepsis is a life-threatening systemic disease with severe microvascular dysfunction. Pericytes preserve vascular homeostasis. To our knowledge, the potential roles of microRNAs in sepsis-induced pericyte dysfunction have not been explored. METHODS: We determined lung pericyte expression of miR-145a in cecal ligation and puncture (CLP)-induced sepsis. Mouse lung pericytes were isolated and transfected with a miR-145a mimic, followed by stimulation with lipopolysaccharide (LPS). We measured inflammatory cytokine levels. To assess the functions of miR-145a in vivo, we generated a pericyte-specific miR-145a-knockout mouse and determined sepsis-induced organ injury, lung and renal vascular leakage, and mouse survival rates. We used RNA sequencing and Western blotting to analyze the signaling pathways regulated by miR-145a. RESULTS: CLP led to decreased miR-145a expression in lung pericytes. The miR-145a mimic inhibited LPS-induced increases in cytokines. In CLP-induced sepsis, pericytes lacking miR-145a exhibited increased lung and kidney vascular leakage and reduced survival rates. We found that miR-145a could suppress LPS-induced NF-κB activation. In addition, we confirmed that the transcription factor Friend leukemia virus integration 1 (Fli-1) is a target of miR-145a and that Fli-1 activates NF-κB signaling. CONCLUSION: Our results demonstrated that pericyte miR-145a mediates sepsis-associated microvascular dysfunction, potentially by means of Fli-1-mediated modulation of NF-κB signaling.


Asunto(s)
Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Pericitos/metabolismo , Sepsis/etiología , Animales , Citocinas/sangre , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , FN-kappa B/metabolismo , Pronóstico , Interferencia de ARN , Sepsis/mortalidad , Transducción de Señal
10.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1261-L1269, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321279

RESUMEN

Circulating microRNAs (miRNAs) can be taken up by recipient cells and have been recently associated with the acute respiratory distress syndrome (ARDS). Their role in host predisposition to the syndrome is unknown. The objective of the study was to identify circulating miRNAs associated with the development of sepsis-related ARDS and examine their impact on endothelial cell gene expression and function. We determined miRNA levels in plasma collected from subjects during the first 24 h of admission to a tertiary intensive care unit for sepsis. A miRNA that was differentially expressed between subjects who did and did not develop ARDS was identified and was transfected into human pulmonary microvascular endothelial cells (HPMECs). RNA sequencing, in silico analysis, cytokine expression, and leukocyte migration assays were used to determine the impact of this miRNA on gene expression and cell function. In two cohorts, circulating miR-887-3p levels were elevated in septic patients who developed ARDS compared with those who did not. Transfection of miR-887-3p into HPMECs altered gene expression, including the upregulation of several genes previously associated with ARDS (e.g., CXCL10, CCL5, CX3CL1, VCAM1, CASP1, IL1B, IFNB, and TLR2), and activation of cellular pathways relevant to the response to infection. Functionally, miR-887-3p increased the endothelial release of chemokines and facilitated trans-endothelial leukocyte migration. Circulating miR-887-3p is associated with ARDS in critically ill patients with sepsis. In vitro, miR-887-3p regulates the expression of genes relevant to ARDS and neutrophil tracking. This miRNA may contribute to ARDS pathogenesis and could represent a novel therapeutic target.


Asunto(s)
MicroARN Circulante/sangre , MicroARN Circulante/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/sangre , MicroARNs/genética , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/genética , Movimiento Celular , Quimiocinas/metabolismo , MicroARN Circulante/metabolismo , Estudios de Cohortes , Femenino , Humanos , Pulmón/irrigación sanguínea , Masculino , MicroARNs/metabolismo , Microvasos/patología , Persona de Mediana Edad , Neutrófilos/metabolismo
11.
Crit Care ; 23(1): 44, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760290

RESUMEN

BACKGROUND: The acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar-capillary barrier resulting in accumulation of proteinaceous edema and increased inflammatory cells in the alveolar space. We previously found that endothelial progenitor cell (EPC) exosomes prevent endothelial dysfunction and lung injury in sepsis in part due to their encapsulation of miRNA-126. However, the effects of EPC exosomes in acute lung injury (ALI) remain unknown. METHODS: To determine if EPC exosomes would have beneficial effects in ALI, intratracheal administration of lipopolysaccharide (LPS) was used to induce ALI in mice. Lung permeability, inflammation, and the role of miRNA-126 in the alveolar-epithelial barrier function were examined. RESULTS: The intratracheal administration of EPC exosomes reduced lung injury following LPS-induced ALI at 24 and 48 h. Compared to placebo, intratracheal administration of EPC exosomes significantly reduced the cell number, protein concentration, and cytokines/chemokines in the bronchoalveolar lavage fluid (BALF), indicating a reduction in permeability and inflammation. Further, EPC exosomes reduced myeloperoxidase (MPO) activity, lung injury score, and pulmonary edema, demonstrating protection against lung injury. Murine fibroblast (NIH3T3) exosomes, which do not contain abundant miRNA-126, did not provide these beneficial effects. In human small airway epithelial cells (SAECs), we found that overexpression of miRNA-126-3p can target phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), while overexpression of miRNA-126-5p inhibits the inflammatory alarmin HMGB1 and permeability factor VEGFα. Interestingly, both miR-126-3p and 5p increase the expression of tight junction proteins suggesting a potential mechanism by which miRNA-126 may mitigate LPS-induced lung injury. CONCLUSIONS: Our data demonstrated that human EPC exosomes are beneficial in LPS-induced ALI mice, in part through the delivery of miRNA-126 into the injured alveolus.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Células Progenitoras Endoteliales/enzimología , Inflamación/fisiopatología , Lesión Pulmonar Aguda/fisiopatología , Animales , Western Blotting/métodos , Exosomas/metabolismo , Proteína HMGB1/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/efectos adversos , Ratones , MicroARNs/fisiología , Peroxidasa/metabolismo , Peroxidasa/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Índice de Severidad de la Enfermedad , Tráquea/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Mol Ther ; 26(5): 1375-1384, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29599080

RESUMEN

Microvascular dysfunction leads to multi-organ failure and mortality in sepsis. Our previous studies demonstrated that administration of exogenous endothelial progenitor cells (EPCs) confers protection in sepsis as evidenced by reduced vascular leakage, improved organ function, and increased survival. We hypothesize that EPCs protect the microvasculature through the exosomes-mediated transfer of microRNAs (miRNAs). Mice were rendered septic by cecal ligation and puncture (CLP), and EPC exosomes were administered intravenously at 4 hr after CLP. EPC exosomes treatment improved survival, suppressing lung and renal vascular leakage, and reducing liver and kidney dysfunction in septic mice. EPC exosomes attenuated sepsis-induced increases in plasma levels of cytokines and chemokine. Moreover, we determined miRNA contents of EPC exosomes with next-generation sequencing and found abundant miR-126-3p and 5p. We demonstrated that exosomal miR-126-5p and 3p suppressed LPS-induced high mobility group box 1 (HMGB1) and vascular cell adhesion molecule 1 (VCAM1) levels, respectively, in human microvascular endothelial cells (HMVECs). Inhibition of microRNA-126-5p and 3p through transfection with microRNA-126-5p and 3p inhibitors abrogated the beneficial effect of EPC exosomes. The inhibition of exosomal microRNA-126 failed to block LPS-induced increase in HMGB1 and VCAM1 protein levels in HMVECs and negated the protective effect of exosomes on sepsis survival. Thus, EPC exosomes prevent microvascular dysfunction and improve sepsis outcomes potentially through the delivery of miR-126.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Sepsis/metabolismo , Animales , Biomarcadores , Permeabilidad Capilar , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/citología , Humanos , Ratones , MicroARNs/genética , Especificidad de Órganos , Pronóstico , Sepsis/etiología , Sepsis/mortalidad
13.
J Infect Dis ; 218(12): 1995-2005, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30053030

RESUMEN

Background: Pericytes are vascular mural cells and are embedded in the basement membrane of the microvasculature. Recent studies suggest a role for pericytes in lipopolysaccharide (LPS)-induced microvascular dysfunction and mortality, but the mechanisms of pericyte loss in sepsis are largely unknown. Methods: By using a cecal ligation and puncture (CLP)-induced murine model of sepsis, we observed that CLP led to lung and renal pericyte loss and reduced lung pericyte density and pericyte/endothelial cell (EC) coverage. Results: Up-regulated Friend leukemia virus integration 1 (Fli-1) messenger ribonucleic acid (RNA) and protein levels were found in lung pericytes from CLP mice in vivo and in LPS-stimulated lung pericytes in vitro. Knockout of Fli-1 in Foxd1-derived pericytes prevented CLP-induced pericyte loss, vascular leak, and improved survival. Disrupted Fli-1 expression by small interfering RNA inhibited LPS-induced inflammatory cytokines and chemokines in cultured lung pericytes. Furthermore, CLP-induced pericyte pyroptosis was mitigated in pericyte Fli-1 knockout mice. Conclusions: Our findings suggest that Fli-1 is a potential therapeutic target in sepsis.


Asunto(s)
Pericitos/fisiología , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sepsis/metabolismo , Animales , Ciego , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Inflamación/metabolismo , Ligadura , Lipopolisacáridos , Pulmón/citología , Ratones , Ratones Noqueados , Piroptosis , Sepsis/inmunología , Regulación hacia Arriba
14.
Mol Med ; 22: 115-123, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27031787

RESUMEN

Endothelial cell (EC) dysfunction is a critical mediator of the acute respiratory distress syndrome (ARDS). Recent studies have demonstrated that stromal cell-derived factor 1α (SDF-1α) promotes EC barrier integrity. Our previous studies used a SDF-1α analogue CTCE-0214 (CTCE) in experimental sepsis and demonstrated that it attenuated vascular leak and modulated microRNA (miR) levels. We examined the hypothesis that CTCE improves EC function in lipopolysaccharide (LPS)-induced ARDS through increasing miR-126 expression. Human microvascular endothelial cells (HMVECs) were treated with thrombin to disrupt the EC integrity followed by incubation with CTCE or SDF-1α. Barrier function was determined by trans-endothelial electrical resistance assay. CTCE-induced alterations in miRNA expression and signaling pathways involved in barrier function were determined. Thrombin-induced vascular leak was abrogated by both CTCE and SDF-1α. CTCE also prevented thrombin-induced decreases of vascular endothelial (VE)-cadherin cell surface expression and expansion of the intercellular space. CTCE increased miR-126 levels and induced activation of AKT/Rac 1 signaling. Cotreatment with a miR-126 inhibitor blocked the protective effects of CTCE on AKT activation and endothelial permeability. In subsequent in vivo studies, ARDS was induced by intratracheal instillation of LPS. Intravenous injection of CTCE diminished the injury severity as evidenced by significant reductions in protein, immune cells, inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid, increased miR-126 expression and decreased pulmonary vascular leak and alveolar edema. Taken together, our data show that CTCE improves endothelial barrier integrity through increased expression of miR-126 and activation of Rac 1 signaling and represents an important potential therapeutic strategy in ARDS.

15.
Crit Care ; 19: 440, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26683209

RESUMEN

BACKGROUND: Endothelial dysfunction plays a critical role in the development of sepsis-related organ failure; however, the mechanisms that govern its development are not fully understood. Endothelial progenitor cells (EPCs) reduce vascular leak and organ failure in experimental sepsis while modulating plasma expression of microRNA (miRNA). MicroRNAs are small, noncoding segments of RNA that regulate gene expression and are known to modulate endothelial cell function and inflammatory signaling pathways. We hypothesized that miRNA may play an etiologic role in the endothelial dysfunction of sepsis and that their extracellular expression levels would be altered in those with shock. METHODS: Thirteen miRNAs were identified by literature search and analysis of the contents of human EPC-derived exosomes using real-time PCR. Plasma samples were obtained from patients within 24 hours of their admission to ICUs with severe sepsis (n = 62) and from healthy controls (n = 32) and real-time PCR was used to measure the expression of the candidate miRNAs. The Wilcoxon rank sum test was used to compare expression levels of the 13 candidate miRNAs in septic patients with (n = 29) and without (n = 33) shock while logistic regression was used to determine the area under the curve for associations between miRNA expression and shock. Bioinformatic analyses using miRNA databases were performed to identify pathways and gene targets of differentially expressed miRNA with potential relevance to sepsis-related shock. RESULTS: MiRNA-34a expression was significantly increased in the group who developed shock (p = 0.03) while miR-15a and miR-27a expressions were significantly decreased in this group (p = 0.006 and 0.03, respectively). The combined expression of these three miRNAs predicted shock with an area under the curve of 0.78 (95 % CI 0.66-0.90). In silico analyses predict that these three miRNAs regulate genes involved in endothelial cell cycle, apoptosis, VEGF signaling, LPS-stimulated MAPK signaling, and nuclear factor kappa B signaling. CONCLUSIONS: The plasma levels of miRNA are altered in patients with severe sepsis complicated by shock and may offer prognostic value as well as insights into the mechanisms of endothelial dysfunction in sepsis.


Asunto(s)
MicroARNs/análisis , Choque Séptico/patología , Adulto , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Plasma/metabolismo , Pronóstico , Choque Séptico/complicaciones , Choque Séptico/etiología , Choque Séptico/metabolismo
16.
Crit Care ; 19: 200, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25930108

RESUMEN

INTRODUCTION: Kallistatin levels in the circulation are reduced in patients with sepsis and liver disease. Transgenic mice expressing kallistatin are resistant to lipopolysaccharide (LPS)-induced mortality. Here, we investigated the effect of kallistatin on survival and organ damage in mouse models of established sepsis. METHODS: Mice were rendered septic by cecal ligation and puncture (CLP), or endotoxemic by LPS injection. Recombinant human kallistatin was administered intravenously six hours after CLP, or intraperitoneally four hours after LPS challenge. The effect of kallistatin treatment on organ damage was examined one day after sepsis initiation, and mouse survival was monitored for four to six days. RESULTS: Human kallistatin was detected in mouse serum of kallistatin-treated mice. Kallistatin significantly reduced CLP-induced renal injury as well as blood urea nitrogen, serum creatinine, interleukin-6 (IL-6), and high mobility group box-1 (HMGB1) levels. In the lung, kallistatin decreased malondialdehyde levels and HMGB1 and toll-like receptor-4 (TLR4) synthesis, but increased suppressor of cytokine signaling-3 (SOCS3) expression. Moreover, kallistatin attenuated liver injury, serum alanine transaminase (ALT) levels and hepatic tumor necrosis factor-α (TNF-α) synthesis. Furthermore, delayed kallistatin administration improved survival in CLP mice by 38%, and LPS-treated mice by 42%. In LPS-induced endotoxemic mice, kallistatin attenuated kidney damage in association with reduced serum creatinine, IL-6 and HMGB1 levels, and increased renal SOCS3 expression. Kallistatin also decreased liver injury in conjunction with diminished serum ALT levels and hepatic TNF-α and TLR4 expression. In cultured macrophages, kallistatin through its active site increased SOCS3 expression, but this effect was blocked by inhibitors of tyrosine kinase, protein kinase C and extracellular signal-regulated kinase (ERK), indicating that kallistatin stimulates a tyrosine-kinase-protein kinase C-ERK signaling pathway. CONCLUSIONS: This is the first study to demonstrate that delayed human kallistatin administration is effective in attenuating multi-organ injury, inflammation and mortality in mouse models of polymicrobial infection and endotoxemia. Thus, kallistatin therapy may provide a promising approach for the treatment of sepsis in humans.


Asunto(s)
Lesión Renal Aguda/prevención & control , Hígado/efectos de los fármacos , Proteínas Recombinantes/farmacología , Sepsis/tratamiento farmacológico , Serpinas/farmacología , Alanina Transaminasa/sangre , Animales , Nitrógeno de la Urea Sanguínea , Células Cultivadas , Creatinina/sangre , Modelos Animales de Enfermedad , Endotoxemia/metabolismo , Proteína HMGB1/metabolismo , Humanos , Interleucina-6/sangre , Hígado/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Malondialdehído/metabolismo , Ratones , Sepsis/metabolismo , Serpinas/sangre , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
17.
Am J Respir Crit Care Med ; 189(12): 1509-19, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24707934

RESUMEN

RATIONALE: Endothelial progenitor cells (EPCs) have been associated with human sepsis but their role is incompletely understood. Stromal cell-derived factor (SDF)-1α facilitates EPC recruitment and is elevated in murine sepsis models. Previous studies have demonstrated that the SDF-1α analog CTCE-0214 (CTCE) is beneficial in polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. OBJECTIVES: We hypothesized that exogenously administered EPCs are also beneficial in CLP sepsis and that CTCE provides synergistic benefit. METHODS: Mice were subjected to CLP and administered EPCs at varying doses, CTCE, or a combination of the two. Mouse survival, plasma miRNA expression, IL-10 production, and lung vascular leakage were determined. The in vitro effect of CTCE on miRNA expression and EPC function were determined. MEASUREMENTS AND MAIN RESULTS: Survival was improved with EPC therapy at a threshold of 10(6) cells. In coculture studies, EPCs augmented LPS-induced macrophage IL-10 production. In vivo EPC administration in sepsis increased plasma IL-10, suppressed lung vascular leakage, attenuated liver and kidney injury, and augmented miR-126 and -125b expression, which regulate endothelial cell function and/or inflammation. When subthreshold numbers of EPCs were coadministered with CTCE in CLP mice they synergistically improved survival. We demonstrated that CTCE recruits endogenous EPCs in septic mice. In in vitro analysis, CTCE enhanced EPC proliferation, angiogenesis, and prosurvival signaling while inhibiting EPC senescence. These cellular effects were, in part, explained by the effect of CTCE on miR-126, -125b, -34a, and -155 expression in EPCs. CONCLUSIONS: EPCs and CTCE represent important potential therapeutic strategies in sepsis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Quimiocina CXCL12/uso terapéutico , Trasplante de Células Madre de Sangre del Cordón Umbilical , Células Endoteliales/trasplante , Sepsis/terapia , Animales , Antiinflamatorios/farmacología , Biomarcadores/metabolismo , Quimiocina CXCL12/farmacología , Terapia Combinada , Células Endoteliales/efectos de los fármacos , Humanos , Interleucina-10/metabolismo , Masculino , Ratones , MicroARNs/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Sepsis/mortalidad , Células Madre/efectos de los fármacos , Resultado del Tratamiento
18.
Immunology ; 142(2): 216-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24467264

RESUMEN

Kallistatin, a plasma protein, has been shown to exert multi-factorial functions including inhibition of inflammation, oxidative stress and apoptosis in animal models and cultured cells. Kallistatin levels are reduced in patients with sepsis and in lipopolysaccharide (LPS)-induced septic mice. Moreover, transgenic mice expressing kallistatin are more resistant to LPS-induced mortality. Here, we investigated the effects of human kallistatin on organ injury and survival in a mouse model of polymicrobial sepsis. In this study, mice were injected intravenously with recombinant kallistatin (KS3, 3 mg/kg; or KS10, 10 mg/kg body weight) and then rendered septic by caecal ligation and puncture 30 min later. Kallistatin administration resulted in a > 10-fold reduction of peritoneal bacterial counts, and significantly decreased serum tumour necrosis factor-α, interleukin-6 and high mobility group box-1 (HMGB1) levels. Kallistatin also inhibited HMGB1 and toll-like receptor-4 gene expression in the lung and kidney. Administration of kallistatin attenuated renal damage and decreased blood urea nitrogen and serum creatinine levels, but increased endothelial nitric oxide synthase and nitric oxide levels in the kidney. In cultured endothelial cells, human kallistatin via its heparin-binding site inhibited HMGB1-induced nuclear factor-κB activation and inflammatory gene expression. Moreover, kallistatin significantly reduced apoptosis and caspase-3 activity in the spleen. Furthermore, kallistatin treatment markedly improved the survival of septic mice by 23% (KS3) and 41% (KS10). These results indicate that kallistatin is a unique protecting agent in sepsis-induced organ damage and mortality by inhibiting inflammation and apoptosis, as well as enhancing bacterial clearance in a mouse model of polymicrobial sepsis.


Asunto(s)
Modelos Animales de Enfermedad , Riñón/efectos de los fármacos , Riñón/patología , Sepsis/tratamiento farmacológico , Sepsis/patología , Serpinas/farmacología , Serpinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Caspasa 3/metabolismo , Creatina/sangre , Proteína HMGB1/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Inyecciones Intravenosas , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Serpinas/administración & dosificación , Bazo/efectos de los fármacos , Bazo/metabolismo , Tasa de Supervivencia , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Immunology ; 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25201453

RESUMEN

Previous studies demonstrated that the CXCL12 peptide analogue CTCE-0214 (CTCE) has beneficial effects in experimental sepsis induced by cecal ligation and puncture (CLP). We examined the hypothesis that CTCE recruits neutrophils (PMN) to the site of infection, enhances PMN function and improves survival of mice in CLP-induced sepsis with antibiotic treatment. Septic mice (n=15) were administered imipenem (25mg/kg) and CTCE (10 mg/kg) subcutaneously vs. vehicle control at designated intervals post-CLP. CTCE treatment increased PMN recruitment in CLP-induced sepsis as evidenced by increased PMN in blood by 2.4±0.6 fold at 18h, 2.9±0.6 fold at 24h, respectively and in peritoneal fluid by 2.0±0.2 fold at 24h vs. vehicle control. CTCE treatment reduced bacterial invasion in blood (CFU decreased 77±11%), peritoneal fluid (CFU decreased 78±9%) and lung (CFU decreased 79±8% vs. CLP vehicle). The improved PMN recruitment and bacterial clearance correlated with reduced mortality with CTCE treatment (20% vs. 67% vehicle controls). In vitro studies support the notion that CTCE augments PMN function by enhancing phagocytic activity (1.25±0.02 fold), increasing intracellular production of ROS (32±4%) and improving bacterial killing (CFU decreased 27±3%). These composite findings support the hypothesis that specific CXCL12 analogues with ancillary antibiotic treatment are beneficial in experimental sepsis, in part, by augmenting PMN recruitment and function. This article is protected by copyright. All rights reserved.

20.
Cells ; 12(15)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566011

RESUMEN

Pericytes are specialized cells located in close proximity to endothelial cells within the microvasculature. They play a crucial role in regulating blood flow, stabilizing vessel walls, and maintaining the integrity of the blood-brain barrier. The loss of pericytes has been associated with the development and progression of various diseases, such as diabetes, Alzheimer's disease, sepsis, stroke, and traumatic brain injury. This review examines the detection of pericyte loss in different diseases, explores the methods employed to assess pericyte coverage, and elucidates the potential mechanisms contributing to pericyte loss in these pathological conditions. Additionally, current therapeutic strategies targeting pericytes are discussed, along with potential future interventions aimed at preserving pericyte function and promoting disease mitigation.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Accidente Cerebrovascular , Humanos , Pericitos/patología , Células Endoteliales , Barrera Hematoencefálica/patología , Accidente Cerebrovascular/patología , Lesiones Traumáticas del Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA