Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pulm Pharmacol Ther ; 87: 102317, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154901

RESUMEN

The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells. This FTO-driven gefitinib resistance is hinged upon the co-occurrence of PELI3 (Pellino E3 Ubiquitin Protein Ligase Family Member 3) expression and concurrent autophagy activation. Manipulation of PELI3 expression and autophagy activation, including its attenuation, was efficacious in both inducing and overcoming gefitinib resistance within NSCLC cells, as validated in vitro and in vivo. In summary, this study has successfully elucidated the intricate interplay involving FTO-mediated m6A modification, its consequential downstream effect on PELI3, and the concurrent involvement of autophagy in fostering the emergence of gefitinib resistance within the therapeutic context of NSCLC.

2.
Environ Sci Technol ; 57(34): 12732-12740, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590181

RESUMEN

Nonphotosynthetic microorganisms are typically unable to directly utilize light energy, but light might change the metabolic pathway of these bacteria indirectly by forming intermediates such as reactive oxygen species (ROS). This work investigated the role of light on nitrogen conversion by anaerobic ammonium oxidation (anammox) consortia. The results showed that high intensity light (>20000 lx) caused ca. 50% inhibition of anammox activity, and total ROS reached 167% at 60,000 lx. Surprisingly, 200 lx light was found to induce unexpected promotion of the nitrogen conversion rate, and ultraviolet light (<420 nm) was identified as the main contributor. Metagenomic and metatranscriptomic analyses revealed that the gene encoding cytochrome c peroxidase was highly expressed only under 200 lx light. 15N isotope tracing, gene abundance quantification, and external H2O2 addition experiments showed that photoinduced trace H2O2 triggered cytochrome c peroxidase expression to take up electrons from extracellular nonfermentative organics to synthesize NADH and ATP, thereby expediting nitrogen dissimulation of anammox consortia. External supplying reduced humic acid into a low-intensity light exposure system would result in a maximal 1.7-fold increase in the nitrogen conversion rate. These interesting findings may provide insight into the niche differentiation and widespread nature of anammox bacteria in natural ecotopes.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Citocromo-c Peroxidasa , Electrones , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Nitrógeno
3.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614055

RESUMEN

Western honey bee (Apis mellifera), a eusocial insect with a superior economic and ecological value, is widely used in the beekeeping industry throughout the world. As a new class of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) participate in the modulation of considerable biological processes, such as the immune response via diverse manners. Here, the identification, characteristic investigation, and molecular verification of circRNAs in the Apis mellifera ligustica larval guts were conducted, and the expression pattern of larval circRNAs during the Ascosphaera apis infection was analyzed, followed by the exploration of the potential regulatory part of differentially expressed circRNAs (DEcircRNAs) in host immune responses. A total of 2083 circRNAs in the larval guts of A. m. ligustcia were identified, with a length distribution ranging from 106 nt to 92,798 nt. Among these, exonic circRNAs were the most abundant type and LG1 was the most distributed chromosome. Additionally, 25, 14, and 30 up-regulated circRNAs as well as 26, 25, and 62 down-regulated ones were identified in the A. apis-inoculated 4-, 5-, and 6-day-old larval guts in comparison with the corresponding un-inoculated larval guts. These DEcircRNAs were predicted to target 35, 70, and 129 source genes, which were relative to 12, 23, and 20 GO terms as well as 11, 10, and 27 KEGG pathways, including 5 cellular and humoral immune pathways containing apoptosis, autophagy, endocytosis, MAPK, Toll, and Imd signaling pathways. Furthermore, complex competing endogenous RNA (ceRNA) regulatory networks were detected to be formed among DEcircRNAs, DEmiRNAs, and DEmRNAs. The Target DEmRNAs were engaged in 24, 20, and 25 functional terms as well as 62, 80, and 159 pathways, including several vital immune defense-associated pathways, namely the lysosome, endocytosis, phagosome, autophagy, apoptosis, MAPK, Jak-STAT, Toll, and Imd signaling pathways. Finally, back-splicing sites within 15 circRNAs and the difference in the 9 DEcircRNAs' expression between un-inoculated and A. apis-inoculated larval guts were confirmed utilizing molecular methods. These findings not only enrich our understanding of bee host-fungal pathogen interactions, but also lay a foundation for illuminating the mechanism underlying the DEcircRNA-mediated immune defense of A. m. ligustica larvae against A. apis invasion.


Asunto(s)
Abejas , Onygenales , ARN Circular , Animales , Abejas/genética , Abejas/microbiología , Inmunidad , Larva/genética , Larva/microbiología , Onygenales/patogenicidad , ARN Circular/genética
4.
J Environ Manage ; 311: 114860, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35287074

RESUMEN

The difficulties of enrichment and preservation of anaerobic ammonium oxidation bacteria (AnAOB) greatly limit their application in practice. Herein, traditional and emerging preservative agents (e.g., EPS + N2H4, betaine, glycerol and trehalose) were evaluated for their preservation of AnAOB-dominant sludge at different temperatures (e.g., 4 °C and room temperature). In addition, the effects of substrates on preservation were also considered. The results showed that adding betaine or glycerol at 4 °C was the optimal strategy for preserving anammox granular sludge. The relative anammox activities (rAA) increased by 145.26% and 158.30% at the recovery phase, respectively. Moreover, the absolute abundances of functional gene hzsA increased by 339% and 46%, respectively. Although the granular properties and microbial community structures changed during the preservation, the general performance of anammox granules could effectively restored. Collectively, this study provides the optimal strategies for anammox sludge preservation at low temperatures.

5.
J Environ Manage ; 286: 112267, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667820

RESUMEN

Antibiotic pollution is becoming increasingly severe due to its extensive use. The potential application of the anaerobic ammonium oxidation (anammox) process in the treatment of wastewater containing antibiotics has attracted much attention. As common antibiotics, spiramycin (SPM) and streptomycin (STM) are widely used to treat human and animal diseases. However, their combined effects on the anammox process remain unknown. Therefore, this study systematically evaluated the response of the anammox process to both antibiotics. The half maximal inhibitory concentrations of SPM and STM were determined. The continuous-flow anammox system could adapt to SPM and STM at low concentrations, while antibiotics at high concentrations exhibited inhibitory effects. When the concentrations reached 5 mg L-1 SPM and 50 mg L-1 STM, the nitrogen removal efficiency dramatically decreased and then rapidly recovered within 8 days. Correspondingly, the abundances of dominant bacteria and genes also changed with antibiotic concentrations. In general, the anammox process showed a stable performance and a high resistance to SPM and STM, suggesting that acclimatization by elevating the concentrations was beneficial for the anammox process to obtain resistance to different antibiotics with high concentrations. This study provides guidance for the stable operation of anammox-based biological treatment of antibiotics containing wastewater.


Asunto(s)
Compuestos de Amonio , Macrólidos , Aminoglicósidos , Anaerobiosis , Animales , Antibacterianos , Reactores Biológicos , Humanos , Nitrógeno , Oxidación-Reducción , Aguas Residuales
6.
Ultraschall Med ; 41(2): 167-174, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31141825

RESUMEN

PURPOSE: The accuracy of internal carotid artery stenosis (ICAS) quantification depends on the method of stenosis measurement, impacting therapeutic decisions and outcomes. The NASCET method references the stenotic to the distal ICAS lumen, the ECST method to the local outer and the common carotid artery (CC) method to the CC diameter. Direct morphometric stenosis measurement with four-dimensionally guided three-dimensional ultrasonography (4D/3DC-US) demonstrated good validity for the commonly used NASCET method. The NASCET definition has clinically relevant drawbacks. Our purpose was to investigate the validity of the ECST and CC methods. MATERIALS AND METHODS: 4D/3DC-US percent-stenosis measures of 103 stenoses (80 patients) were compared to quantitative catheter angiography and duplex ultrasonography (DUS) in a blinded fashion. RESULTS: The 4D/3DC-US versus angiography intermethod standard deviation of differences (SDD, n = 103) was lower for the CC method (5.7 %) compared to the NASCET (8.1 %, p < 0.001) and ECST methods (9.1 %, p < 0.001). Additionally, it was lower than the NASCET angiography interrater SDD of 52 stenoses (SDD 7.2 %, p = 0.047) and non-inferior for the ECST method (p = 0.065). Interobserver analysis of equivalent grading methods showed no differences for the SDDs between angiography and 4D/3DC-US observers (p > 0.076). Binary comparison to angiography showed equal Kappa values > 0.7 and an accuracy ≥ 85 % for the NASCET and CC methods, higher than for the ECST method. The binary accuracy of ICAS grading did not differ from DUS for all methods. CONCLUSION: The new 4D/3DC-US CC method is an accurate and well reproducible alternative to the NASCET and ECST methods and offers potential for clinical application.


Asunto(s)
Estenosis Carotídea , Ultrasonografía Doppler , Angiografía , Arteria Carótida Común , Arteria Carótida Interna , Estenosis Carotídea/diagnóstico por imagen , Humanos , Ultrasonografía , Ultrasonografía Doppler/métodos
7.
J Environ Manage ; 262: 110375, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32250829

RESUMEN

The extensive application of antibiotics, and the occurrence and spread of antibiotic resistance genes (ARGs) shade health risks to human and animal. The long-term effects of sulfamethoxazole (SMX) and tetracycline (TC) on denitrification process were evaluated in this study, with the focus on nitrogen removal performance, microbial community and ARGs. Results showed that low-concentration SMX and TC (<0.2 mg L-1) initially caused a deterioration in nitrogen removal performance, while higher concentrations (0.4-20 mg L-1) of both antibiotics had no further inhibitory influences. The abundances of ARGs in both systems generally increased during the whole period, and most of them had significant correlations with intI1, especially efflux-pump genes. Castellaniella, which was the dominant genus under antibiotic pressure, might be potential resistant bacteria. These findings provide an insight into the toxic effects of different antibiotics on denitrification process, and guides future efforts to control antibiotics pollution in ecosystems.


Asunto(s)
Antibacterianos , Microbiota , Animales , Desnitrificación , Farmacorresistencia Microbiana , Genes Bacterianos
8.
Arch Psychiatr Nurs ; 32(1): 57-61, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29413073

RESUMEN

BACKGROUND: Perinatal posttraumatic stress disorder (PPTSD) is a common stress-induced mental disorder worldwide. The Perinatal Posttraumatic Stress Disorder Questionnaire (PPQ) is an excellent questionnaire that measures the symptoms of PPTSD, but has not been translated into Chinese yet. OBJECTIVES: The aims of this study were to develop a translated Chinese version of the (PPQ) and validate the psychometric characteristics of the PPQ in a Chinese context. METHODS: After translation, back-translation, and expert discussion, 280 mothers at 1 to 18months postpartum filled out the questionnaires through the Internet. Then the reliability and validity of the translated questionnaire were tested. RESULTS: The Chinese version of PPQ (PPQ-C) was composed of 14 items. Cronbach's α coefficient was 0.84, test-retest reliability was 0.88, and the content validity was 0.99. Exploratory factor analysis extracted three factors (representing "arousal", "avoidance" and "intrusion") accounted for 53.30% of the variance. The established 3 factors model was well fitted with the collected data (χ2=76.40, p<0.05). IMPLICATIONS FOR PRACTICE: The PPQ-C is a short, reliable, and valid instrument that measures the symptoms of PPTSD, and it is recommend for clinical screening. IMPLICATIONS FOR RESEARCH: Further research could involve diverse participants, as well as better adapt the PPQ-C to Chinese culture.


Asunto(s)
Pueblo Asiatico , Atención Perinatal , Psicometría/estadística & datos numéricos , Trastornos por Estrés Postraumático/psicología , Encuestas y Cuestionarios , Adulto , Femenino , Humanos , Internet , Madres/psicología , Embarazo , Reproducibilidad de los Resultados , Traducción
9.
Bioresour Technol ; 407: 131092, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986879

RESUMEN

The extremely slow growth rate of anaerobic ammonia oxidation (anammox) bacteria limits full-scale application of anammox process worldwide. In this study, extracellular polymeric substances (EPS)-coated polypropylene (PP) carriers were prepared for biofilm formation. The biomass adhesion rate of EPS-PP carrier was 12 times that of PP carrier, and EPS-PP achieved significant enrichment of E. coli BY63. The 120-day continuous flow experiment showed that the EPS-PP carrier accelerated the formation of anammox biofilm, and the nitrogen removal efficiency increased by 10.5 %. In addition, the abundance of Candidatus Kuenenia in EPS-PP biofilm was 27.1%. Simultaneously, amino acids with high synthesis cost and the metabolites of glycerophospholipids related to biofilm formation on EPS-PP biofilm were significantly up-regulated. Therefore, EPS-PP carriers facilitated the rapid formation of anammox biofilm and promoted the metabolic activity of functional bacteria, which further contributed to the environmental and economic sustainability of anammox process.


Asunto(s)
Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Oxidación-Reducción , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Amoníaco/metabolismo , Polipropilenos , Nitrógeno/metabolismo , Consorcios Microbianos/fisiología , Bacterias/metabolismo , Anaerobiosis/fisiología , Biomasa , Escherichia coli/metabolismo
10.
J Hazard Mater ; 480: 135860, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39298955

RESUMEN

Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.

11.
Sci Total Environ ; 945: 174121, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901593

RESUMEN

The widespread use of surfactants raise challenges to biological wastewater treatment. Anaerobic ammonium oxidation (anammox) process has the potential to treat wastewater containing anionic surfactants, but the response of anammox consortia at the molecular level under long-term exposure is unclear. Using high-throughput sequencing and gene quantification, combined with molecular docking, the effect of sodium dodecyl sulfonate (SDS) on anammox consortia were investigated. Levels of reactive oxygen species (ROS) might be lower than the threshold of oxidative damage, while the increase of lactate dehydrogenase (LDH) represented the cell membrane damage. Decreased abundance of functional genes (hdh, hzsA and nirS) indicated the decrease of the anammox bacterial abundance. Trace amounts of N-acyl homoserine lactone (AHL, C6-HSL, C8-HSL and C12-HSL) contained in influent could induce endogenous quorum sensing (QS), which could regulate the correlation between functional bacteria to optimize the microbial community and strengthen the resistance of anammox consortia to SDS. In addition, the proliferation of disinfectant resistance genes might increase the environmental pathogenicity of sewage discharge. This work highlights the potential response mechanism of anammox consortium to surfactants and provides a universal microbial-friendly bioenhancement strategy based on QS.


Asunto(s)
Percepción de Quorum , Tensoactivos , Eliminación de Residuos Líquidos , Tensoactivos/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Oxidación-Reducción , Anaerobiosis , Compuestos de Amonio/metabolismo , Simulación del Acoplamiento Molecular , Consorcios Microbianos/fisiología
12.
Water Res ; 268(Pt B): 122694, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39481331

RESUMEN

Microbial cooperation determines the efficacy of wastewater biological treatment, and the adaptability of microorganisms to environmental stresses varies. Recently, extensive use of hormones results in their inevitable discharge into aquatic environment. Therefore, mainstream and sidestream anammox reactors were constructed in this study to evaluate their removal performance of progesterone and nitrogen simultaneously, the adaptability of anammox consortia to progesterone stress and the corresponding regulation mechanism. Both anammox processes had the resilience to progesterone stress, with the average nitrogen removal efficiency exceeding 90 %. At the same time, progesterone removal efficiency also exceeded 70 %. In contrast, microbial community in the mainstream reactors was more susceptible to progesterone interference. The adaptation of anammox consortia mainly depended on microbial cooperation and molecular regulation. Initially, bacteria secreted more extracellular polymeric substances to detain progesterone. Biodegradation also contributed to mitigating the side effect of progesterone, which was demonstrated by the proliferation of potential degrading bacteria such as Bacillus salacetis, Bacillus wiedmannii and Rhodococcus erythropolis. In addition, the enhancement of microbial interaction intensity drove their cooperation to enhance adaptability and maintain stable performance. Combined with metagenomic and metatranscriptomic analyses, such microbial adaptability was enhanced through molecular regulations, including the energy redistribution for amino acid synthesis and alteration of key metabolic pathways. Related functional gene expressions and microbial interactions were, in turn, regulated by quorum sensing. This work verifies the feasibility of anammox process in hormone-containing wastewater treatment and provides a holistic understanding of molecular mechanism of microbial interaction and coadaptation to stress.

13.
J Hazard Mater ; 477: 135403, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096644

RESUMEN

Drug resistance poses a high risk to human health. Extensive use of non-antibiotic drugs contributes to antibiotic resistance genes (ARGs) transfer. However, how they affect the spread of broad-host plasmids in complex biological systems remains unknown. This study investigated the effect of metoprolol on the transfer frequency and host range of ARGs in both intrageneric and intergeneric pure culture systems, as well as in anammox microbiome. The results showed that environmental concentrations of metoprolol significantly promoted the intrageneric and intergeneric conjugative transfer. Initially, metoprolol induced excessive oxidative stress, resulting in high cell membrane permeability and bacterial SOS response. Meanwhile, more pili formation increased the adhesion and contact between bacteria, and the abundance of conjugation-related genes also increased significantly. Activation of the electron transport chain provided more ATP for this energy-consuming process. The underlying mechanism was further verified in the complex anammox conjugative system. Metoprolol induced the enrichment of ARGs and mobile genetic elements. The enhanced bacterial interaction and energy generation facilitated the high conjugative transfer frequency of ARGs. In addition, plasmid-borne ARGs tended to transfer to opportunistic pathogens. This work raises public concerns about the health and ecological risks of non-antibiotic drugs.


Asunto(s)
Conjugación Genética , Metoprolol , Plásmidos , Plásmidos/genética , Conjugación Genética/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Transferencia de Gen Horizontal , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Antibacterianos/farmacología , Genes MDR/genética , Microbiota/efectos de los fármacos
14.
Environ Int ; 186: 108599, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554504

RESUMEN

Ciprofloxacin (CIP) poses a high risk of resistance development in water environments. Therefore, comprehensive effects and recovery strategies of CIP in anaerobic ammonia oxidation (anammox) process were systematically elucidated from consortia and pure strains perspectives. The anammox consortia was not significantly affected by the stress of 10 mg L-1 CIP, while the higher concentration (20 mg L-1) of CIP caused a dramatic reduction in the nitrogen removal performance of anammox system. Simultaneously, the abundances of dominant functional bacteria and corresponding genes also significantly decreased. Such inhibition could not be mitigated by the recovery strategy of adding hydrazine and hydroxylamine. Reducing nitrogen load rate from 5.1 to 1.4 kg N m-3 d-1 promoted the restoration of three reactors. In addition, the robustness and recovery of anammox systems was evaluated using starvation and shock strategies. Simultaneously, antibiotic resistance genes and key metabolic pathways of anammox consortia were upregulated, such as carbohydrate and energy metabolisms. In addition, 11 pure stains were isolated from the anammox system and identified through phylogenetic analysis, 40 % of which showed multidrug resistance, especially Pseudomonas. These findings provide deep insights into the responding mechanism of anammox consortia to CIP stress and promote the application of anammox process for treating wastewater containing antibiotics.


Asunto(s)
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacología , Oxidación-Reducción , Amoníaco/metabolismo , Anaerobiosis , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/genética , Consorcios Microbianos , Nitrógeno/metabolismo , Aguas Residuales/microbiología
15.
Chemosphere ; 333: 138947, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37196790

RESUMEN

Anaerobic ammonium oxidation (anammox) is a low-carbon biological nitrogen removal process, that has been widely applied to treat high-strength wastewater. However, the practical application of mainstream anammox treatment is limited due to the slow growth rate of anammox bacteria (AnAOB). Therefore, it is important to provide a comprehensive summary of the potential impacts and regulatory strategies for system stability. This article systematically reviewed the effects of environmental fluctuations on anammox systems, summarizing the bacterial metabolisms and the relationship between metabolite and microbial functional effects. To address the shortcoming of mainstream anammox process, molecular strategies based on quorum sensing (QS) were proposed. Sludge granulation, gel encapsulation and carrier-based biofilm technologies were adopted to enhance the QS function in microbial aggregation and reduction of biomass loss. Furthermore, this article discussed the application and progress of anammox-coupled processes. Valuable insights were provided for the stable operation and development of mainstream anammox process from the perspectives of QS and microbial metabolism.


Asunto(s)
Compuestos de Amonio , Percepción de Quorum , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Compuestos de Amonio/metabolismo , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Nitrógeno/metabolismo , Anaerobiosis , Desnitrificación
16.
Water Res ; 239: 120061, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201375

RESUMEN

The widespread use of antibiotics has created an antibiotic resistance genes (ARGs)-enriched environment, which causes high risks on human and animal health. Although antibiotics can be partially adsorbed and degraded in wastewater treatment processes, striving for a complete understanding of the microbial adaptive mechanism to antibiotic stress remains urgent. Combined with metagenomics and metabolomics, this study revealed that anammox consortia could adapt to lincomycin by spontaneously changing the preference for metabolite utilization and establishing interactions with eukaryotes, such as Ascomycota and Basidiomycota. Specifically, quorum sensing (QS) based microbial regulation and the ARGs transfer mediated by clustered regularly interspaced short palindromic repeats (CRISPR) system and global regulatory genes were the principal adaptive strategies. Western blotting results validated that Cas9 and TrfA were mainly responsible for the alteration of ARGs transfer pathway. These findings highlight the potential adaptative mechanism of microbes to antibiotic stress and fill gaps in horizontal gene transfer pathways in the anammox process, further facilitating the ARGs control through molecular and synthetic biology techniques.


Asunto(s)
Sistemas CRISPR-Cas , Percepción de Quorum , Animales , Humanos , Lincomicina/farmacología , Multiómica , Oxidación Anaeróbica del Amoníaco , Antibacterianos/farmacología
17.
Bioresour Technol ; 367: 128228, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332868

RESUMEN

Shortage of anaerobic ammonium oxidation (anammox) sludge greatly limits the extensive full-scale application of anammox-based processes. Although numerous start-up strategies have been proposed, the interaction among microbial consortia and corresponding mechanism during the process development remain unknown. In this study, three reactors were established based on different seed sludges. After 27 days, the anammox process inoculated with anammox granules and activated sludge (1:5) was firstly achieved, and the highest nitrogen removal rate was 1.17 kg N m-3 d-1. Correspondingly, the anammox activity and abundances of related functional genes increased. Notably, the dominant anammox bacteria shifted from Candidatus Kuenenia to Candidatus Brocadia. Metagenomic analysis indicated that quorum sensing-based regulation mainly contributed to the proliferation and accumulation of anammox bacteria. This work provides an insight into the quorum sensing (QS)-regulated microbial interactions in the anammox and activated sludge consortia during the process development.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Percepción de Quorum , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrógeno , Bacterias/genética , Desnitrificación
18.
J Hazard Mater ; 434: 128817, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427966

RESUMEN

Antibiotics and antibiotic resistance genes (ARGs) have been recognized as emerging high-risk pollutants for human and animal health. This study systematically investigated the comprehensive effects of a typical antibiotic (sulfadimidine, SDM) in livestock and poultry breeding wastewater on the anammox process, with the aim of elucidating the intracellular and extracellular protective mechanisms of the anammox consortia to the antibiotic stress. Results revealed that the high-concentration SDM significantly reduced the specific anammox activity (SAA) by 37.8%. Changes in the abundance of Candidatus Kuenenia showed a similar trend with that of SAA, while other nitrogen-related microorganisms (e.g., Nitrosomonas and Nitrospira) contributed to the nitrogen removal especially during the inhibitory period. Resistance of the anammox consortia to SDM mainly depended on the protection of ARGs and EPS. Network analysis revealed the host range of eARGs was relatively larger than that of iARGs, and intI1 was closely associated with representative denitrifiers. In addition, metaproteomic analysis and molecular docking results indicated that abundant proteins in EPS could detain SDM in the extracellular matrix through forming complex via hydrogen bond. These findings provide a guidance for the stable operation of anammox process and ARGs transfer controlling.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Sulfametazina , Animales , Antibacterianos/farmacología , Reactores Biológicos , Farmacorresistencia Microbiana/genética , Simulación del Acoplamiento Molecular , Nitrógeno , Oxidación-Reducción , Aguas Residuales
19.
Sci Total Environ ; 803: 150009, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492484

RESUMEN

The anaerobic ammonium oxidation (anammox) process has been recognized as an efficient nitrogen removal technology. However, anammox bacteria are susceptible to surrounding environments and different pollutants, which limits the extensive application of the anammox process worldwide. Numerous researchers investigate the effects of various pollutants on the anammox process or bacteria, and related findings have also been reviewed with the focused on their inhibitory effects on process performance and microbial community. This review systemically summarized the recent advances in the inhibition, mechanism and recovery process of traditional and emerging pollutants on the anammox process over a decade, such as organics, metals, antibiotics, nanoparticles, etc. Generally, low-concentration pollutants exhibited a promotion on the anammox activity, while high-concentration pollutants showed inhibitory effects. The inhibitory threshold concentration of different pollutants varied. The combined effects of multipollutant also attracts more attentions, including synergistic, antagonistic and independent effects. Additionally, remaining problems and research needs are further proposed. This review provides a foundation for future research on the inhibition in anammox process, and promotes the proper operation of anammox processes treating different types of wastewaters.


Asunto(s)
Compuestos de Amonio , Contaminantes Ambientales , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción , Aguas Residuales
20.
Sci Total Environ ; 851(Pt 1): 158191, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995153

RESUMEN

The inevitable introduction of biodegradable carbon sources (such as monosaccharides and volatile fatty acids) originating from pretreatment units might affect the performance of the mainstream anaerobic ammonium oxidation (anammox) process. Two model carbon sources (glucose and acetate) were selected to investigate their effects on granule-based anammox systems under mainstream conditions (70 mg total nitrogen (TN) L-1, 15 °C). At a nitrogen loading rate of 2.87 ± 0.80 kg N m-3 d-1, a satisfactory effluent quality (TN < 10 mg L-1) was achieved in the presence of glucose or acetate at a chemical oxygen demand (COD/N) ratio of 0.5. The contribution of anammox to nitrogen removal decreased with increasing COD/N ratio to 1.0 because the expression of anammox functional genes was inhibited, whereas the expression of denitrifying functional genes was promoted. However, the nitrogen removal efficiency of the two considered reactors was maintained above 80 %. Self-stratification of the microbial community along the reactor height facilitated a functional balance through the retention of anammox bacteria in granules but resulted in washout of denitrifying bacteria in flocs under a high-flow pattern. These findings highlighted the advantages of granule-based systems in the mainstream anammox process due to their inherent biomass self-segregation property and the need for the development of targeted biomass retention strategies.


Asunto(s)
Compuestos de Amonio , Microbiota , Compuestos de Amonio/metabolismo , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Carbono , Glucosa , Monosacáridos , Nitrógeno/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA