Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078933

RESUMEN

Protein nanocages (PNCs) in cells and viruses have inspired the development of self-assembling protein nanomaterials for various purposes. Despite the successful creation of artificial PNCs, the de novo design of PNCs with defined permeability remains challenging. Here, we report a prototype oxygen-impermeable PNC (OIPNC) assembled from the vertex protein of the ß-carboxysome shell, CcmL, with quantum dots as the template via interfacial engineering. The structure of the cage was solved at the atomic scale by combined solid-state NMR spectroscopy and cryoelectron microscopy, showing icosahedral assembly of CcmL pentamers with highly conserved interpentamer interfaces. Moreover, a gating mechanism was established by reversibly blocking the pores of the cage with molecular patches. Thus, the oxygen permeability, which was probed by an oxygen sensor inside the cage, can be completely controlled. The CcmL OIPNC represents a PNC platform for oxygen-sensitive or oxygen-responsive storage, catalysis, delivery, sensing, etc.


Asunto(s)
Oxígeno/metabolismo , Proteínas/metabolismo , Microscopía por Crioelectrón/métodos , Espectroscopía de Resonancia Magnética/métodos , Permeabilidad
2.
Small ; 20(8): e2304615, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37822169

RESUMEN

Hot exciton organic light-emitting diode (OLED) emitters can balance the high performance of a device and reduce efficiency roll-off by fast reverse intersystem crossing from high-lying triplets (hRISC). In this study, an excited-state intramolecular proton transfer (ESIPT) fluorophore of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) with the typical characteristic properties of a hot exciton is developed. With high efficiency of utilization of the exciton (91%), its yellow OLED exhibited high external quantum efficiency (EQE) of 5.6%, current efficiency (CE) of 16.8 cd A-1 , and power efficiency (PE) of 17.3 lm W-1 . The performance of the yellow emissive "hot exciton" ESIPT fluorophores is among the highest recorded. Due to the large Stokes shift of the ESIPT emitter, non-energy-transferred high-performance white OLEDs (WOLEDs) are developed, which are reproducible and highly efficient. This is possible because of the independent harvesting of most of the triplets in both complementary-color emitters without the interference of energy transfer. The PyHBT-based WOLEDs exhibit a maximum EQE of 14.3% and CE of 41.1 cd A-1 , which facilitates the high-yield mass production of inexpensive WOLEDs.

3.
Analyst ; 149(2): 290-303, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099470

RESUMEN

Telomerase as a new valuable biomarker for early diagnosis and prognosis evaluation of cancer has attracted much interest in the field of biosensors, cell imaging, and drug screening. In this review, we mainly focus on different optical techniques and various signal amplification strategies for telomerase activity determination. Fluorometric, colorimetry, chemiluminescence, surface-enhanced Raman scattering (SERS), and dual-mode techniques for telomerase sensing and imaging are summarized. Signal amplification strategies include two categories: one is nucleic acid-based amplification, such as rolling circle amplification (RCA), the hybridization chain reaction (HCR), and catalytic hairpin assembly (CHA); the other is nanomaterial-assisted amplification, including metal nanoclusters, quantum dots, transition metal compounds, graphene oxide, and DNA nanomaterials. Challenges and prospects are also discussed to provide new insights for future development of multifunctional strategies and techniques for in situ and in vivo analysis of biomarkers for accurate cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Neoplasias , Telomerasa , Humanos , Telomerasa/análisis , ADN/análisis , Hibridación de Ácido Nucleico/métodos , Diagnóstico por Imagen , Técnicas Biosensibles/métodos , Neoplasias/diagnóstico por imagen , Técnicas de Amplificación de Ácido Nucleico/métodos
4.
Nanotechnology ; 35(17)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38262050

RESUMEN

Chemodynamic therapy (CDT) has gained increasing attention by virtue of its high tumor specificity and low side effect. However, the low concentration of hydrogen peroxide (H2O2) in the tumor site suppresses the therapeutic efficacy of CDT. To improve the efficacy, introducing other kind of therapeutic modality is a feasible choice. Herein, we develop a self-amplified activatable nanomedicine (PCPTH NP) for chemodynamic/chemo combination therapy. PCPTH NP is composed of a H2O2-activatable amphiphilic prodrug PEG-PCPT and hemin. Upon addition of H2O2, the oxalate linkers within PCPTH NP are cleaved, which makes the simultaneous release of CPT and hemin. The released CPT can not only kill cancer cells but also upregulate the intracellular reactive oxygen species (ROS) level. The elevated ROS level may accelerate the release of drugs and enhance the CDT efficacy. PCPTH NP shows a H2O2concentration dependent release profile, and can effectively catalyze H2O2into hydroxyl radical (·OH) under acidic condition. Compared with PCPT NP without hemin, PCPTH NP has better anticancer efficacy bothin vitroandin vivowith high biosafety. Thus, our study provides an effective approach to improve the CDT efficacy with high tumor specificity.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Hemina , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Quimioterapia Combinada , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
5.
Angew Chem Int Ed Engl ; 63(27): e202405937, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38654446

RESUMEN

Single-atom nanozymes (SAzymes) with atomically dispersed active sites are potential substitutes for natural enzymes. A systematic study of its multiple functions can in-depth understand SAzymes's nature, which remains elusive. Here, we develop a novel ultrafast synthesis of sputtered SAzymes by in situ bombarding-embedding technique. Using this method, sputtered copper (Cu) SAzymes (CuSA) is developed with unreported unique planar Cu-C3 coordinated configuration. To enhance the tumor-specific targeting, we employ a bioorthogonal approach to engineer CuSA, denoted as CuSACO. CuSACO not only exhibits minimal off-target toxicity but also possesses exceptional ultrahigh catalase-, oxidase-, peroxidase-like multienzyme activities, resulting in reactive oxygen species (ROS) storm generation for effective tumor destruction. Surprisingly, CuSACO can release Cu ions in the presence of glutathione (GSH) to induce cuproptosis, enhancing the tumor treatment efficacy. Notably, CuSACO's remarkable photothermal properties enables precise photothermal therapy (PTT) on tumors. This, combined with nanozyme catalytic activities, cuproptosis and immunotherapy, efficiently inhibiting the growth of orthotopic breast tumors and gliomas, and lung metastasis. Our research highlights the potential of CuSACO as an innovative strategy to utilize multiple mechanism to enhance tumor therapeutic efficacy, broadening the exploration and development of enzyme-like behavior and physiological mechanism of action of SAzymes.


Asunto(s)
Cobre , Inmunoterapia , Terapia Fototérmica , Cobre/química , Cobre/farmacología , Humanos , Animales , Catálisis , Ratones , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral
6.
Angew Chem Int Ed Engl ; : e202408861, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898541

RESUMEN

Despite various efforts to optimize the near-infrared (NIR) performance of perylene diimide (PDI) derivatives for bio-imaging, convenient and efficient strategies to amplify the fluorescence of PDI derivatives in biological environment and the intrinsic mechanism studies are still lacking. Herein, we propose an alkyl-doping strategy to amplify the fluorescence of PDI derivative-based nanoparticles for improved NIR fluorescence imaging. The developed PDI derivative, OPE-PDI, shows much brighter in n-Hexane (HE) compared with that in other organic media, and the excited state dynamics investigation experimentally elucidates the solvent effect-induced suppression of intermolecular energy transfer and intramolecular nonradiative decay as the underlying mechanism for the fluorescence improvement. Theoretical calculations reveal the lowest reorganization energies of OPE-PDI in HE among various solvents, indicating the effectively suppressed conformational relaxation to support the strongest radiative decay. Inspired by this, an alkyl atmosphere mimicking HE is constructed by incorporating the octadecane into OPE-PDI-based nanoparticles, permitting up to 3-fold fluorescence improvement compared with the counterpart nanoparticles. Owing to the merits of high brightness, anti-photobleaching, and low biotoxicity for the optimal nanoparticles, they have been employed for probing and long-term monitoring of tumor. This work highlights a facile strategy for the fluorescence enhancement of PDI derivative-based nanoparticles.

7.
Angew Chem Int Ed Engl ; 63(15): e202401036, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38362791

RESUMEN

Developing Type-I photosensitizers provides an attractive approach to solve the dilemma of inadequate efficacy of photodynamic therapy (PDT) caused by the inherent oxygen consumption of traditional Type-II PDT and anoxic tumor microenvironment. The challenge for the exploration of Type-I PSs is to facilitate the electron transfer ability of photosensitization molecules for transforming oxygen or H2O to reactive oxygen species (ROS). Herein, we propose an electronic acceptor-triggered photoinduced electron transfer (a-PET) strategy promoting the separation of electron-hole pairs by marriage of two organic semiconducting molecules of a non-fullerene scaffold-based photosensitizer and a perylene diimide that significantly boost the Type-I PDT pathway to produce plentiful ROS, especially, inducing 3.5-fold and 2.5-fold amplification of hydroxyl (OH⋅) and superoxide (O2 -⋅) generation. Systematic mechanism exploration reveals that intermolecular electron transfer and intramolecular charge separation after photoirradiation generate a competent production of radical ion pairs that promote the Type-I PDT process by theoretical calculation and ultrafast femtosecond transient absorption (fs-TA) spectroscopy. By complementary tumor diagnosis with photoacoustic imaging and second near-infrared fluorescence imaging, this as-prepared nanoplatform exhibits fabulous photocytotoxicity in harsh hypoxic conditions and terrific cancer revoked abilities in living mice. We envision that this work will broaden the insight into high-efficiency Type-I PDT for cancer phototheranostics.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Ratones , Animales , Oxígeno , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Electrones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Microambiente Tumoral
8.
Small ; 19(1): e2205640, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366913

RESUMEN

An enormous challenge still exists for designing molecules with the second near-infrared (NIR-II, 1000-1700 nm) window absorption, NIR-II fluorescence emission, and batch-to-batch reproducibility, which is the premise for high-performance NIR-II phototheranostics. Although organic small molecules and polymers have been largely explored for phototheranostics, it is difficult to satisfy the above three elements simultaneously. In this work, molecular oligomerization (the general structure is S-D-A-D'-A-D-S) and donor engineering (changing the donor linker D') strategies are applied to design phototheranostic agents. Such strategies are proved to be efficient in adjusting molecular configuration and energy level, affecting the optical and thermal properties. Three oligomers (O-T, O-DT, and O-Q) are further prepared into water-soluble nanoparticles (NPs). Particularly, the O-T NPs exhibit a higher molar extinction coefficient at 1064 nm (≈4.3-fold of O-DT NPs and ≈4.8-fold of O-Q NPs). Furthermore, the O-T NPs show the highest NIR-II fluorescence brightness and heating capacity (PCE = 73%) among the three NPs under 1064 nm laser irradiation and served as agents for NIR-II imaging guided in vivo photothermal therapy. Overall, by using molecular oligomerization and donor engineering strategies, a powerful example of constructing high-performance NIR-II phototheranostics for clinical translation is given.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Reproducibilidad de los Resultados , Terapia Fototérmica , Nanopartículas/química , Imagen Óptica/métodos , Rayos Láser , Fototerapia , Nanomedicina Teranóstica/métodos
9.
Small ; : e2307829, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044585

RESUMEN

Photoacoustic imaging (PAI) and photothermal therapy (PTT) conducted over the near-infrared-II (NIR-II) window offer the benefits of noninvasiveness and deep tissue penetration. This necessitates the development of highly effective therapeutic agents with NIR-II photoresponsivity. Currently, the predominant organic diagnostic agents used in NIR-II PAI-guided PTT are conjugated polymeric materials. However, they exhibit a low in vivo clearance rate and long-term biotoxicity, limiting their clinical translation. In this study, an organic small molecule (CY-1234) with NIR-II absorption and nanoencapsulation (CY-1234 nanoparticles (NPs)) for PAI-guided PTT is reported. Extended π-conjugation is achieved in the molecule by introducing donor-acceptor units at both ends of the molecule. Consequently, CY-1234 exhibits a maximum absorption peak at 1234 nm in tetrahydrofuran. Nanoaggregates of CY-1234 are synthesized via F-127 encapsulation. They exhibit an excellent photothermal conversion efficiency of 76.01% upon NIR-II light irradiation. After intravenous injection of CY-1234 NPs into tumor-bearing mice, strong PA signals and excellent tumor ablation are observed under 1064 nm laser irradiation. This preliminary study can pave the way for the development of small-molecule organic nanoformulations for future clinical applications.

10.
Small ; 19(22): e2206053, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852618

RESUMEN

The phototheranostics in the second near-infrared window (NIR-II) have proven to be promising for the precise cancer theranostics. However, the non-responsive and "always on" imaging mode lacks the selectivity, leading to the poor diagnosis specificity. Herein, a tumor microenvironment (TME) activated NIR-II phototheranostic nanoplatform (Ag2 S-Fe(III)-DBZ Pdots, AFD NPs) is designed based on the principle of Förster resonance energy transfer (FRET). The AFD NPs are fabricated through self-assembly of Ag2 S QDs (NIR-II fluorescence probe) and ultra-small semiconductor polymer dots (DBZ Pdots, NIR-II fluorescence quencher) utilizing Fe(III) as coordination nodes. In normal tissues, the AFD NPs maintain in "off" state, due to the FRET between Ag2 S QDs and DBZ Pdots. However, the NIR-II fluorescence signal of AFD NPs can be rapidly "turn on" by the overexpressed GSH in tumor tissues, achieving a superior tumor-to-normal tissue (T/NT) signal ratio. Moreover, the released Pdots and reduced Fe(II) ions provide NIR-II photothermal therapy (PTT) and chemodynamic therapy (CDT), respectively. The GSH depletion and NIR-II PTT effect further aggravate CDT mediated oxidative damage toward tumors, achieving the synergistic anti-tumor therapeutic effect. The work provides a promising strategy for the development of TME activated NIR-II phototheranostic nanoprobes.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Compuestos Férricos , Terapia Fototérmica , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Transferencia Resonante de Energía de Fluorescencia , Imagen Óptica , Línea Celular Tumoral , Microambiente Tumoral
11.
Analyst ; 148(23): 5856-5863, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37885382

RESUMEN

A simple but robust fluorescence strategy based on a nontarget DNA-triggered catalytic hairpin assembly (CHA) was constructed to probe microRNA-21 (miR-21). A short ssDNA rather than degradable target miRNA was employed as an initiator. Two molecular beacons needed to assist the CHA process were simplified to avoid unfavorable nonspecific interactions. In the presence of the target, the initiator was released from a partially duplex and triggered the cyclic CHA reaction, resulting in a significantly amplified optical readout. A wide linear range from 0.1 pM to 1000 pM for the sensing of miR-21 in buffer was achieved with a low detection limit of 0.76 pM. Fortunately, this strategy demonstrated an obviously improved performance for miR-21 detection in diluted serum. The fluorescence signals were enhanced remarkably and the sensitivity was further improved to 0.12 pM in 10% serum. The stability for miR-21 quantification and the capability for the analysis of single nucleotide polymorphisms (SNPs) were also improved greatly. More importantly, the biosensor could be applied to image miR-21 in different living tumor cells with high resolution, illustrating its promising potential for the assay of miRNAs in various complex situations for early-stage disease diagnosis and biological studies in cells.


Asunto(s)
Bioensayo , MicroARNs , Catálisis , ADN de Cadena Simple/genética , MicroARNs/genética , Polimorfismo de Nucleótido Simple
12.
Nanotechnology ; 34(48)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37611549

RESUMEN

Second near-infrared window (NIR-II) fluorescence imaging has shown great potential in the field of bioimaging. To achieve a better imaging effect, variety of NIR-II fluorescence probes have been designed and developed. Among them, semiconducting oligomers (SOs) have shown unique advantages including high photostability and quantum yield, making them promise in NIR-II fluorescence imaging. Herein, we design a SO nanoparticle (ASONi) for NIR-II fluorescence imaging of tumor. ASONi is composed of an azido-functionalized semiconducting oligomer as the NIR-II fluorescence emitter, and a benzene sulfonamide-ended DSPE-PEG (DSPE-PEG-CAi) as the stabilizer. Owing to the benzene sulfonamide groups on the surface, ASONi has the capability of targeting the carbonic anhydrase IX (CA IX) of MDA-MB-231 breast cancer cell. Compared with ASON without benzene sulfonamide groups on the surface, ASONi has a 1.4-fold higher uptake for MDA-MB-231 cells and 1.5-fold higher breast tumor accumulation after i.v. injection. The NIR-II fluorescence signal of ASONi can light the tumor up within 4 h, demonstrating its capability of active tumor targeting and NIR-II fluorescence imaging.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Nanopartículas , Benceno , Imagen Óptica , Transporte Biológico , Sulfanilamida
13.
J Nanobiotechnology ; 21(1): 230, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468990

RESUMEN

The visualization of bone imaging in vivo is of great significance for the understanding of some bone-related diseases or physiological processes. Herein, a bone-targeted NIR-II small molecule (TTQF-SO3), which was modified with multiple sulfonate groups, was successfully fabricated for the second near-infrared (NIR-II) bone imaging. In vitro studies revealed that TTQF-SO3 showed high affinity for hydroxyapatite and excellent macrophage accumulation ability. In in vivo assays, TTQF-SO3 displayed high bone uptake ability and high NIR-II bone imaging quality, demonstrating the specific bone-targeting ability of the sulfonate-containing probe. In addition, the noninvasive NIR-II imaging detection in bone calcium loss was successfully verified in osteoporosis mice models. Moreover, the negative charge characteristic of TTQF-SO3 showed efficient lymphoid enrichment in living mice by intravenous injection. Overall, these warrant that our TTQF-SO3 is an optimal bone-targeted diagnostic agent for high-quality NIR-II imaging, highlighting its potential promise for clinical translation.


Asunto(s)
Huesos , Espectroscopía Infrarroja Corta , Animales , Ratones , Espectroscopía Infrarroja Corta/métodos , Huesos/diagnóstico por imagen , Imagen Óptica/métodos , Colorantes Fluorescentes
14.
Nanomedicine ; 47: 102618, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270453

RESUMEN

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release. Using 1064 nm light irradiation, local microenvironment photothermal-triggered on-demand noninvasive controllable delivery of miRNA was achieved, aiming to inhibit I/R-induced ferroptosis. Consequently, declined ferroptosis in cardiomyocytes and improved cardiac function, survival rate in rats was achieved through the controlled release of Gel/BTN mimics in I/R model to simultaneously inhibit ferroptosis hub genes NOX4, P53, and LOX expression.


Asunto(s)
Daño por Reperfusión , Animales , Ratas
15.
Angew Chem Int Ed Engl ; 62(6): e202215372, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480198

RESUMEN

Developing conjugated small molecules (CSM) with intense NIR-II (1000-1700 nm) absorption for phototheranostic is highly desirable but remains a tremendous challenge due to a lack of reliable design guidelines. This study reports a high-performance NIR-II CSM for phototheranostic by tailoring molecular planarity. A series of CSM show bathochromic absorption extended to the NIR-II region upon the increasing thiophene number, but an excessive number of thiophene results in decreased NIR-IIa (1300-1400 nm) brightness and photothermal effects. Further introduction of terminal nonconjugated alkyl chain can enhance NIR-II absorption coefficient, NIR-IIa brightness, and photothermal effects. Mechanism studies ascribe this overall enhancement to molecular planarity stemming from the collective contribution of donor/side-chain engineering. This finding directs the design of NIR-II CSM by rational manipulating molecular planarity to perform 1064 nm mediated phototheranostic at high efficiency.

16.
J Am Chem Soc ; 144(2): 787-797, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985903

RESUMEN

Tumor-derived exosome can suppress dendritic cells (DCs) and T cells functions. Excessive secretion of exosomal programmed death-ligand 1 (PD-L1) results in therapeutic resistance to PD-1/PD-L1 immunotherapy and clinical failure. Restored T cells by antiexosomal PD-L1 tactic can intensify ferroptosis of tumor cells and vice versa. Diminishing exosomal suppression and establishing a nexus of antiexosomal PD-L1 and ferroptosis may rescue the discouraging antitumor immunity. Here, we engineered phototheranostic metal-phenolic networks (PFG MPNs) by an assembly of semiconductor polymers encapsulating ferroptosis inducer (Fe3+) and exosome inhibitor (GW4869). The PFG MPNs elicited superior near-infrared II fluorescence/photoacoustic imaging tracking performance for a precise photothermal therapy (PTT). PTT-augmented immunogenic cell death relieved exosomal silencing on DC maturation. GW4869 mediated PD-L1 based exosomal inhibition revitalized T cells and enhanced the ferroptosis. This novel synergy of PTT with antiexosomal PD-L1 enhanced ferroptosis evoked potent antitumor immunity in B16F10 tumors and immunological memory against metastatic tumors in lymph nodes.


Asunto(s)
Compuestos de Anilina/química , Antígeno B7-H1/metabolismo , Compuestos de Bencilideno/química , Compuestos Férricos/química , Ferroptosis , Estructuras Metalorgánicas/química , Animales , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Exosomas/metabolismo , Ferroptosis/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de los fármacos , Inmunoterapia , Interferón gamma/metabolismo , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/terapia , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/uso terapéutico , Ratones , Fenol/química , Técnicas Fotoacústicas , Polietilenglicoles/química , Polímeros/química , Receptor de Muerte Celular Programada 1/metabolismo , Nanomedicina Teranóstica
17.
Small ; 18(19): e2200152, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398988

RESUMEN

Calcium-overload cancer therapy has gained more and more attention owing to its good therapeutic efficacy with low side effect. However, conventional calcium-overload therapy is achieved by introducing an additional calcium element into the tumor site by nanomedicines, which may also lead to the calcium-overload of normal organs, causing an undesirable side effect. To address such issues, capsaicin-decorated semiconducting polymer nanoparticles (CSPN) are designed to modulate the calcium ion channel of cancer cells for calcium-overload cancer therapy without adding an additional calcium element. CSPN is composed of a near-infrared (NIR) absorbing semiconducting polymer (SP) PCPDTBT and a capsaicin-conjugated amphiphilic copolymer, PEG-PHEMA-Cap. Under NIR laser irradiation, PCPDTBT can generate singlet oxygen (1 O2 ), which not only triggers the release of capsaicin, but also induces photodynamic therapy (PDT). The released capsaicin can further activate transient receptor potential cation channel subfamily V member 1 (TRPV1) of U373 cancer cells, leading to an influx of calcium ions into cells. In addition, the intense NIR-II fluorescence signal of CSPN makes it suitable for tumor imaging. Thus, this study develops a tumor specific nanotheranostic system for NIR-II fluorescence imaging-guided calcium-overload/PDT combination therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Calcio , Capsaicina/farmacología , Capsaicina/uso terapéutico , Línea Celular Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Polímeros/uso terapéutico
18.
Biomacromolecules ; 23(4): 1490-1504, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35286085

RESUMEN

Immunotherapy that stimulates the body's own immune system to kill cancer cells has emerged as a promising cancer therapeutic method. However, some types of cancer exhibited a low response rate to immunotherapy, and the high risk of immune-related side effects has been aroused during immunotherapy, which greatly restrict its broad applications in cancer therapy. Phototherapy that uses external light to trigger the therapeutic process holds advantages including high selectivity and efficiency, and low side effects. Recently, it has been proven to be able to stimulate immune response in the tumor region by inducing immunogenic cell death (ICD), the process of which was termed photo-immunotherapy, dramatically improving therapeutic specificity over conventional immunotherapy in several aspects. Among numerous optical materials for photo-immunotherapy, semiconducting polymer nanoparticles (SPNs) have gained more and more attention owing to their excellent optical properties and good biocompatibility. In this review, we summarize recent developments of SPNs for immunotherapy and imaging of immunoactivation. Different therapeutic modalities triggered by SPNs including photo-immunotherapy and photo-immunometabolic therapy are first introduced. Then, applications of SPNs for real-time monitoring immunoactivation are discussed. Finally, the conclusion and future perspectives of this research field are given.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Fototerapia , Polímeros/uso terapéutico
19.
Analyst ; 147(9): 1866-1872, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35412538

RESUMEN

To monitor the deteriorating mercury emissions, it is imperative to propose methods for detecting mercury ions (Hg2+) with sensitivity and selectivity. The SERS spectral-resolved single-particle detection approach can be carried out using dark-field optical microscopy (DFM) combined with Raman spectroscopy. Herein, we have designed a novel yet convenient single-particle detection assay for quantifying Hg2+ using DFM-correlated Raman spectroscopy. In the assay, a tetrahedral DNA-directed core-satellite nanostructure is used as the SERS probe. Especially, one edge of the tetrahedron is made up of a single-stranded DNA containing a Hg2+ aptamer, which reconfigures upon the specific recognition of Hg2+. As a result, the interparticle distance reduces from 4.5 to 1.2 nm, thus generating Raman signal enhancement. As a proof of concept, Hg2+ was detected in a linear range from 1 to 100 nM based on the variation in SERS intensity. Furthermore, the experimental results were supported by the finite difference time domain (FDTD) calculations. Owing to its high sensitivity and selectivity, this method was further employed to detect Hg2+ in practical tap water and lake water samples, revealing that the single-particle detection strategy holds great promise for Hg2+ analysis in real environment analysis.


Asunto(s)
Mercurio , Nanopartículas del Metal , ADN/genética , Oro/química , Iones/química , Mercurio/análisis , Nanopartículas del Metal/química , Espectrometría Raman/métodos , Agua
20.
J Nanobiotechnology ; 20(1): 44, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35062957

RESUMEN

BACKGROUND: The overall survival rate of osteosarcoma (OS) patients has not been improved for 30 years, and the diagnosis and treatment of OS is still a critical issue. To improve OS treatment and prognosis, novel kinds of theranostic modalities are required. Molecular optical imaging and phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), are promising strategies for cancer theranostics that exhibit high imaging sensitivity as well as favorable therapeutic efficacy with minimal side effect. In this study, semiconducting polymer nanoparticles (SPN-PT) for OS-targeted PTT/PDT are designed and prepared, using a semiconducting polymer (PCPDTBT), providing fluorescent emission in the second near-infrared window (NIR-II, 1000 - 1700 nm) and photoacoustic (PA) signal in the first near-infrared window (NIR-I, 650 - 900 nm), served as the photosensitizer, and a polyethylene glycolylated (PEGylated) peptide PT, providing targeting ability to OS. RESULTS: The results showed that SPN-PT nanoparticles significantly accelerated OS-specific cellular uptake and enhanced therapeutic efficiency of PTT and PDT effects in OS cell lines and xenograft mouse models. SPN-PT carried out significant anti-tumor activities against OS both in vitro and in vivo. CONCLUSIONS: Peptide-based semiconducting polymer nanoparticles permit efficient NIR-II fluorescence/NIR-I PA dual-modal imaging and targeted PTT/PDT for OS.


Asunto(s)
Nanopartículas/química , Imagen Óptica/métodos , Osteosarcoma , Fotoquimioterapia/métodos , Nanomedicina Teranóstica , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/metabolismo , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/metabolismo , Péptidos/química , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA