Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 166(2): 215-232, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37284938

RESUMEN

Abnormal activation of the extrasynaptic N-methyl-d-aspartate receptor (NMDAR) contributes to the pathogenesis of Alzheimer's disease (AD). Ceftriaxone (Cef) can improve cognitive impairment by upregulating glutamate transporter-1 and promoting the glutamate-glutamine cycle in an AD mouse model. This study aimed to investigate the effects of Cef on synaptic plasticity and cognitive-behavioral impairment and to unravel the associated underlying mechanisms. We used an APPswe/PS1dE9 (APP/PS1) mouse model of AD in this study. Extrasynaptic components from hippocampal tissue homogenates were isolated using density gradient centrifugation. Western blot was performed to evaluate the expressions of extrasynaptic NMDAR and its downstream elements. Intracerebroventricular injections of adeno-associated virus (AAV)-striatal enriched tyrosine phosphatase 61 (STEP61 ) and AAV-STEP61 -shRNA were used to modulate the expressions of STEP61 and extrasynaptic NMDAR. Long-term potentiation (LTP) and Morris water maze (MWM) tests were performed to evaluate the synaptic plasticity and cognitive function. The results showed that the expressions of GluN2B and GluN2BTyr1472 in the extrasynaptic fraction were upregulated in AD mice. Cef treatment effectively prevented the upregulation of GluN2B and GluN2BTyr1472 expressions. It also prevented changes in the downstream signals of extrasynaptic NMDAR, including increased expressions of m-calpain and phosphorylated p38 MAPK in AD mice. Furthermore, STEP61 upregulation enhanced, whereas STEP61 downregulation reduced the Cef-induced inhibition of the expressions of GluN2B, GluN2BTyr1472 , and p38 MAPK in the AD mice. Similarly, STEP61 modulation affected Cef-induced improvements in induction of LTP and performance in MWM tests. In conclusion, Cef improved synaptic plasticity and cognitive behavioral impairment in APP/PS1 AD mice by inhibiting the overactivation of extrasynaptic NMDAR and STEP61 cleavage due to extrasynaptic NMDAR activation.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Modelos Animales de Enfermedad , Plasticidad Neuronal/fisiología , Cognición , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Neurobiol Learn Mem ; 183: 107480, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153453

RESUMEN

Perturbations in the glutamate-glutamine cycle and glutamate release from presynaptic terminals have been involved in the development of cognitive deficits in Alzheimer's disease (AD) patients and mouse models. Glutamate transporter-1 (GLT-1) removes glutamate from the synaptic cleft and transports it into astrocytes, where it is used as substrate for the glutamate-glutamine cycle. Ceftriaxone has been reported to improve cognitive deficits in AD mice by increasing GLT-1 expression, glutamate transformation to glutamine, and glutamine efflux from astrocytes. However, the impact of ceftriaxone on glutamine metabolism in neurons is unknown. The present study aimed to investigate whether ceftriaxone regulated the production and vesicular assembly of glutamate in the presynaptic terminals of neurons and to determine GLT-1 involvement in this process. We used the amyloid precursor protein (APP)/presenilin-1 (PS1) AD mouse model and GLT-1 knockdown APP/PS1 (GLT-1+/-/APP/PS1) mice. The expression levels of sodium-coupled neutral amino-acid transporter 1 (SNAT1) and vesicular glutamate transporters 1 and 2 (VGLUT1/2) were analyzed by immunofluorescence and immunohistochemistry staining as well as by Western blotting. Glutaminase activity was assayed by fluorometry. Ceftriaxone treatment significantly increased SNAT1 expression and glutaminase activity in neurons in APP/PS1 mice. Similarly, VGLUT1/2 levels were increased in the presynaptic terminals of APP/PS1 mice treated with ceftriaxone. The deletion of one GLT-1 allele in APP/PS1 mice prevented the ceftriaxone-induced upregulation of SNAT1 and VGLUT1/2 expression, indicating that GLT-1 played an important role in ceftriaxone effect. Based on the role of SNAT1, glutaminase, and VGLUT1/2 in the glutamate-glutamine cycle in neurons, the present results suggested that ceftriaxone improved the production and vesicular assembly of glutamate as a neurotransmitter in presynaptic terminals by acting on GLT-1 in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Antibacterianos/farmacología , Ceftriaxona/farmacología , Transportador 2 de Aminoácidos Excitadores/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Enfermedad de Alzheimer/genética , Sistema de Transporte de Aminoácidos A/efectos de los fármacos , Sistema de Transporte de Aminoácidos A/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Técnicas de Silenciamiento del Gen , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutaminasa/efectos de los fármacos , Glutaminasa/metabolismo , Ratones , Ratones Transgénicos , Presenilina-1/genética , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/efectos de los fármacos , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
3.
NMR Biomed ; 33(10): e4326, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32691472

RESUMEN

Direct myelin imaging is promising for characterization of multiple sclerosis (MS) brains at diagnosis and in response to therapy. In this study, a 3D inversion recovery-prepared ultrashort echo time cones (IR-UTE-Cones) sequence was used for both morphological and quantitative imaging of myelin on a clinical 3 T scanner. Myelin powder phantoms with different myelin concentrations were imaged with the 3D UTE-Cones sequence and it showed a strong correlation between concentrations and UTE-Cones signals, demonstrating the ability of the UTE-Cones sequence to directly image myelin in the brain. Quantitative myelin imaging with multi-echo IR-UTE-Cones sequences show similar T2 * values for a D2 O-exchanged myelin phantom (T2 * = 0.33 ± 0.04 ms), ex vivo brain specimens (T2 * = 0.20 ± 0.04 ms) and in vivo healthy volunteers (T2 * = 0.254 ± 0.023 ms), further confirming the feasibility of 3D IR-UTE-Cones sequences for direct myelin imaging in vivo. In ex vivo MS brain study, signal loss is observed in MS lesions, which was confirmed with histology. For the in vivo study, the lesions in MS patients also show myelin signal loss using the proposed direct myelin imaging method, demonstrating the clinical potential for MS diagnosis. Furthermore, the measured IR-UTE-Cones signal intensities show a significant difference between normal-appearing white matter in MS patients and normal white matter in volunteers, which cannot be found in clinical used T2 -FLAIR sequences. Thus, the proposed 3D IR-UTE-Cones sequence showed clinical potential for MS diagnosis with the capability of direct myelin detection of the whole brain.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Vaina de Mielina/patología , Adulto , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Bovinos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Procesamiento de Señales Asistido por Computador , Factores de Tiempo
4.
Biochem Biophys Res Commun ; 512(2): 182-188, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30879763

RESUMEN

Background Ventilator-induced lung injury (VILI) is the most common complication in the mechanical ventilation in clinic. The pathogenesis of VILI has not been well understood. The SRY related High Mobility Group box group-F family member 11(Sox11) is a protein associated with lung development. The focal adhesion kinase(FAK) is a cytoplasmic tyrosine kinase and is regulated by Sox11. The present study, therefore, was undertaken to explore the potential role of Sox11 and FAK in VILI. Methods High volume mechanical ventilation(HMV) was used to establish mouse VILI model under anesthesia. The lung injury was evaluated by analyzing the lung weight, bronchoalveolar lavage fluid, histopathological changes and apoptosis of the lung. The Sox11 and FAK expressions in the lung were investigated by real-time qPCR, western blot and immunohistochemistry analysis. Results HMV induced VILI simultaneously companied with decreased expressions of Sox11 and FAK in alveolar epithelial and interstitial cells either in gene and protein levels. Transfection of Sox11 plasmid significantly upregulated expressions of Sox11 and FAK in gene and protein levels in the lung and particularly effectively alleviated VILI. Furthermore, FAK antagonism by PF562271(FAK antagonist) blocked the alleviating effect of Sox11 plasmid transfection on the VILI. Conclusion The dysregulation in the Sox11 and FAK after HMV play an important role in the pathogenesis of VILI, and facilitating the activity of Sox11and FAK might be an effective target and potential option in the prevention and treatment of VILI in clinic.


Asunto(s)
Quinasa 1 de Adhesión Focal/genética , Factores de Transcripción SOXC/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Terapia Genética , Masculino , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/uso terapéutico , Transfección , Regulación hacia Arriba , Lesión Pulmonar Inducida por Ventilación Mecánica/terapia
5.
Magn Reson Med ; 80(2): 538-547, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29271083

RESUMEN

PURPOSE: UTE sequences with a minimal nominal TE of 8 µs have shown promise for direct imaging of myelin protons (T2 , < 1 ms). However, there is still debate about the efficiency of 2D slice-selective UTE sequences in exciting myelin protons because the half excitation pulses used in these sequences have a relatively long duration (e.g., 0.3-0.6 ms). Here, we compared UTE and inversion-recovery (IR) UTE sequences used with either hard or half excitation pulses (durations 32 µs or 472 µs, respectively) for imaging myelin in native and deuterated ovine brain at 3T. METHODS: Freshly frozen ovine brains were dissected into ∼2 mm-thick pure white matter and ∼3 to 8 mm-thick cerebral hemisphere specimens, which were imaged before and/or after different immersion time in deuterium oxide. RESULTS: Bicomponent T2* analysis of UTE signals obtained with hard excitation pulses detected an ultrashort T2 component (STC) fraction (fS ) of 0% to 10% in native specimens, and up to ∼86% in heavily deuterated specimens. fS values were significantly affected by the TIs used in IR-UTE sequences with either hard or half excitation pulses in native specimens but not in heavily deuterated specimens. The STC T2* was in the range of 150 to 400 µs in all UTE and IR-UTE measurements obtained with either hard or half excitation pulses. CONCLUSION: Our results further support myelin protons as the major source of the ultrashort T2* signals seen on IR-UTE images and demonstrate the potential of IR-UTE sequences with half excitation pulses for directly imaging myelin using clinical scanners. Magn Reson Med 80:538-547, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Química Encefálica/fisiología , Vaina de Mielina/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Animales , Deuterio/química , Sustancia Gris/diagnóstico por imagen , Protones , Ovinos , Procesamiento de Señales Asistido por Computador
6.
NMR Biomed ; 31(9): e3948, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30011103

RESUMEN

Peripheral nerves are a composite tissue consisting of neurovascular elements packaged within a well-organized extracellular matrix. Their composition, size, and anatomy render nerves a challenging medical imaging target. In contrast to morphological MRI, which represents the predominant approach to nerve imaging, quantitative MRI sequences can provide information regarding tissue composition. Here, we applied standard clinical Carr-Purcell-Meiboom-Gill (CPMG) and experimental three-dimensional (3D) ultrashort echo time (UTE) Cones sequences for quantitative nerve imaging including T2 measurement with single-component analysis, T2 * measurement with single-component and bi-component analyses, and magnetization transfer ratio (MTR) analysis. We demonstrated the feasibility and the high quality of single-component T2 *, bi-component T2 *, and MTR approaches to analyze nerves imaged with clinically deployed 3D UTE Cones pulse sequences. For 24 single fascicles from eight nerves, we measured a mean single-component T2 * of 22.6 ±8.9 ms, and a short T2 * component (STC) with a mean T2 * of 1.7 ±1.0 ms and a mean fraction of (6.74 ±4.31)% in bi-component analysis. For eight whole nerves, we measured a mean single-component T2 * of 16.7 ±2.2 ms, and an STC with a mean T2 * of 3.0 ±1.0 ms and a mean fraction of (15.56 ±7.07)% in bi-component analysis. For nine fascicles from three healthy nerves, we measured a mean MTR of (25.2 ±1.9)% for single fascicles and a mean MTR of (23.6 ±0.9)% for whole nerves. No statistically significant correlation was observed between any MRI parameter and routine histological outcomes, perhaps due to the small sample size and lack of apparent sample pathology. Overall, we have successfully demonstrated the feasibility of measuring quantitative MR outcomes ex vivo, which might reflect features of nerve structure and macromolecular content. These methods should be validated comprehensively on a larger and more diverse set of nerve samples, towards the interpretation of in vivo outcomes. These approaches have new and broad implications for the management of nerve disease, injury, and repair.


Asunto(s)
Imagen por Resonancia Magnética , Nervio Tibial/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(4): 274-278, 2018 Apr.
Artículo en Zh | MEDLINE | ID: mdl-29658450

RESUMEN

OBJECTIVE: To study the influence of acute pancreatitis in pregnancy (APIP) on pregnancy outcomes and neonates. METHODS: A retrospective analysis was performed for 33 APIP patients and 31 neonates born alive. RESULTS: Of the 33 APIP patients, 26 (79%) developed APIP in the late pregnancy. Fourteen (45%) patients had hyperlipidemic APIP, 13 (42%) had biliary APIP, and 4 (13%) had other types of APIP. According to the severity, 22 (67%) were mild APIP, 5 (15%) were moderate APIP, and 6 were severe APIP. None of the 33 APIP patients died. Among the 20 patients with term delivery, 11 underwent termination of pregnancy; among the 10 patients with preterm delivery, 9 underwent termination of pregnancy; two patients experienced intrauterine fetal death, and one experienced abortion during the second trimester. Among the 31 neonates born alive (two of them were twins), 1 (3%) died, 12 (39%) experienced neonatal hyperbilirubinemia, 8 (26%) had neonatal hypoglycemia, 6 (19%) had neonatal respiratory distress syndrome, 5 (16%) experienced infectious diseases, and 2 (6%) experienced intracranial hemorrhage. The hyperlipidemic APIP group had a higher percentage of patients undergoing termination of pregnancy than the biliary APIP and other types of APIP groups (P<0.05). The incidence rate of preterm infants in the moderate APIP was higher than in the mild and severe APIP groups (P<0.05). The mean birth weights of neonates were the lowest in the moderate APIP group. The incidence rates of neonatal respiratory distress syndrome, intracranial hemorrhage, and infectious disease were the lowest in the mild APIP group (P<0.05). CONCLUSIONS: APIP can lead to adverse pregnancy outcomes and neonatal diseases, which are associated with the severity of pancreatitis.


Asunto(s)
Pancreatitis/complicaciones , Complicaciones del Embarazo , Enfermedad Aguda , Peso al Nacer , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Embarazo , Estudios Retrospectivos
8.
Magn Reson Med ; 78(1): 226-232, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27495266

RESUMEN

PURPOSE: To investigate two-dimensional (2D) and three-dimensional (3D) ultrashort echo time (UTE) and 3D magnetization-prepared rapid gradient-echo (MP-RAGE) sequences for the imaging of iron-oxide nanoparticles (IONP). METHODS: The phantoms were composed of tubes filled with different IONP concentrations ranging from 2 to 45 mM. The tubes were fixed in an agarose gel phantom (0.9% by weight). Morphological imaging was performed with 3D MP-RAGE, 2D UTE, 2D adiabatic inversion recovery-prepared UTE (2D IR-UTE), 3D UTE with Cones trajectory (3D Cones), and 3D IR-Cones sequences. Quantitative assessment of IONP concentration was performed using R2*(1/T2*) and R1 (1/T1 ) measurements using a 3 Tesla (T) scanner. RESULTS: The 3D MP-RAGE sequence provides high-contrast images of IONP with concentration up to 7.5 mM. Higher IONP concentration up to 37.5 mM can be detected with the UTE sequences, with the highest IONP contrast provided by the 3D IR-Cones sequence. A linear relationship was observed between R2* and IONP concentration up to ∼45 mM, and between R1 and IONP concentration up to ∼30 mM. CONCLUSION: The clinical 3D MP-RAGE sequence can be used to assess lower IONP concentration up to 7.5 mM. The UTE sequences can be used to assess higher IONP concentration up to 45 mM. Magn Reson Med 78:226-232, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Encéfalo/metabolismo , Dextranos/farmacocinética , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Procesamiento de Señales Asistido por Computador , Encéfalo/diagnóstico por imagen , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/instrumentación , Nanopartículas de Magnetita , Imagen Molecular/instrumentación , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
NMR Biomed ; 30(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28731616

RESUMEN

Inversion recovery ultrashort echo time (IR-UTE) imaging holds the potential to directly characterize MR signals from ultrashort T2 tissue components (STCs), such as collagen in cartilage and myelin in brain. The application of IR-UTE for myelin imaging has been challenging because of the high water content in brain and the possibility that the ultrashort T2 * signals are contaminated by water protons, including those associated with myelin sheaths. This study investigated such a possibility in an ovine brain D2 O exchange model and explored the potential of IR-UTE imaging for the quantification of ultrashort T2 * signals in both white and gray matter at 3 T. Six specimens were examined before and after sequential immersion in 99.9% D2 O. Long T2 MR signals were measured using a clinical proton density-weighted fast spin echo (PD-FSE) sequence. IR-UTE images were first acquired with different inversion times to determine the optimal inversion time to null the long T2 signals (TInull ). Then, at this TInull , images with echo times (TEs) of 0.01-4 ms were acquired to measure the T2 * values of STCs. The PD-FSE signal dropped to near zero after 24 h of immersion in D2 O. A wide range of TInull values were used at different time points (240-330 ms for white matter and 320-350 ms for gray matter at TR = 1000 ms) because the T1 values of the long T2 tissue components changed significantly. The T2 * values of STCs were 200-300 µs in both white and gray matter (comparable with the values obtained from myelin powder and its mixture with D2 O or H2 O), and showed minimal changes after sequential immersion. The ultrashort T2 * signals seen on IR-UTE images are unlikely to be from water protons as they are exchangeable with deuterons in D2 O. The source is more likely to be myelin itself in white matter, and might also be associated with other membranous structures in gray matter.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Ovinos/fisiología , Animales , Sustancia Gris/diagnóstico por imagen , Protones , Factores de Tiempo , Sustancia Blanca/diagnóstico por imagen
10.
Neuroimage ; 123: 22-32, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306991

RESUMEN

The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical gain modulation is mediated primarily through direct projections and they point to future investigations of the differential roles of the direct and indirect projections in corticofugal modulation. In summary, our imaging findings demonstrate the large-scale descending influences, from both the auditory and visual cortices, on sound processing in different IC subdivisions. They can guide future studies on the coordinated activity across multiple regions of the auditory network, and its dysfunctions.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Colículos Inferiores/fisiología , Corteza Visual/fisiología , Estimulación Acústica , Animales , Mapeo Encefálico , Potenciales Evocados Auditivos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Vocalización Animal
11.
Magn Reson Med ; 73(1): 59-69, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24469956

RESUMEN

PURPOSE: Intramyocellular lipid (IMCL) droplets are dynamic organelles whose morphology reflects their vital roles in lipid synthesis, usage, and storage in muscle energy metabolism. To develop noninvasive means to measure droplet microstructure in vivo, we investigated the molecular diffusion behavior of IMCL with diffusion magnetic resonance spectroscopy. METHODS: Using extremely large diffusion weighting, we measured the IMCL apparent diffusion coefficients (ADCs) in hindlimb muscle of rodents from normal feeding, 60-h fasting, streptozotocin-induced diabetic, and high-fat-diet-induced obese groups. RESULTS: IMCL ADCs decreased markedly with diffusion time, confirming the restricted diffusion of lipid molecules within IMCL droplets. IMCL droplet size, determined by transmission electron microscopy, was closely correlated with ADC. IMCL ADC was sensitive to metabolic alterations, decreasing in the 60-h fasting and diabetic groups while increasing in the obese group. These findings indicated that the IMCL droplet size decreased following 60-h fasting and in STZ-induced diabetes but increased in high-fat-diet-induced obesity. CONCLUSION: MR diffusion characterization of IMCL droplet size provides a unique means to examine the intracellular lipid dynamics and metabolic abnormalities in vivo.


Asunto(s)
Algoritmos , Gotas Lipídicas/química , Gotas Lipídicas/ultraestructura , Lípidos/análisis , Espectroscopía de Resonancia Magnética/métodos , Fibras Musculares Esqueléticas/química , Animales , Rastreo Celular/métodos , Células Cultivadas , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Fibras Musculares Esqueléticas/citología , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Neuroimage ; 90: 235-45, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24394694

RESUMEN

The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn(2+) administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn(2+) injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn(2+) transfer but not intra- or inter-hemispheric monosynaptic Mn(2+) transport after Mn(2+) injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies.


Asunto(s)
Mapeo Encefálico/métodos , Manganeso , Corteza Visual/anatomía & histología , Vías Visuales/anatomía & histología , Animales , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Ratas , Ratas Sprague-Dawley , Descanso
13.
Magn Reson Med ; 72(5): 1389-96, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24258877

RESUMEN

PURPOSE: To investigate whether diffusion time (Δ) affects the diffusion measurements in liver and their sensitivity in detecting fibrosis. METHODS: Liver fibrosis was induced in Sprague-Dawley rats (n = 12) by carbon tetrachloride (CCl(4)) injections. Diffusion-weighted MRI was performed longitudinally during 8-week CCl(4) administration at 7 Tesla (T) using single-shot stimulated-echo EPI with five b-values (0 to 1000 s/mm(2)) and three Δs. Apparent diffusion coefficient (ADC) and true diffusion coefficient (D(true)) were calculated by using all five b-values and large b-values, respectively. RESULTS: ADC and D(true) decreased with Δ for both normal and fibrotic liver at each time point. ADC and D(true) also generally decreased with the time after CCl(4) insult. The reductions in D(true) between 2-week and 4-week CCl(4) insult were larger than the ADC reductions at all Δs. At each time point, D(true) measured with long Δ (200 ms) detected the largest changes among the 3 Δs examined. Histology revealed gradual collagen deposition and presence of intracellular fat vacuoles after CCl(4) insult. CONCLUSION: Our results demonstrated the Δ dependent diffusion measurements, indicating restricted diffusion in both normal and fibrotic liver. D(true) measured with long Δ acted as a more sensitive index of the pathological alterations in liver microstructure during fibrogenesis.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Cirrosis Hepática/patología , Animales , Modelos Animales de Enfermedad , Imagen Eco-Planar , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Factores de Tiempo
14.
Int J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954664

RESUMEN

BACKGROUND: Liver failure remains a critical clinical challenge with limited treatment options. Cross-circulation, the establishment of vascular connections between individuals, has historically been explored as a potential supportive therapy but with limited success. This study investigated the feasibility of combining cross-circulation with a rapidly deployable veno-venous bypass (VVB) graft for multi-organ support in a rat model of total hepatectomy, representing the most severe form of liver failure. MATERIALS AND METHODS: A Y-shaped VVB graft was fabricated using coaxial electrospinning of PLCL/heparin nanofibers and magnetic rings for rapid anastomosis. After total hepatectomy in rats, the VVB graft was implanted to divert blood flow. Cross-circulation was then established between anhepatic and normal host rats. Hemodynamics, biochemical parameters, blood gases, and survival were analyzed across three groups: hepatectomy with blocked vessels (block group), hepatectomy with VVB only (VVB group), and hepatectomy with VVB and cross-circulation (VVB/cross-circulation group). RESULTS: The VVB graft exhibited suitable mechanical properties and hemocompatibility. VVB rapidly restored hemodynamic stability and mitigated abdominal congestion post-hepatectomy. Cross-circulation further ameliorated liver dysfunction, metabolic derangements, and coagulation disorders in anhepatic rats, significantly prolonging survival compared to the VVB group (mean 6.56±0.58 vs 4.05±0.51 h, P<0.05) and the block group (mean 1.01±0.05 h, P<0.05). CONCLUSION: Combining cross-circulation with a rapidly deployed VVB graft provided effective multi-organ biosystemic support in a rat model of total hepatectomy, substantially improving the biochemical status and survival time. This approach holds promise for novel liver failure therapies and could facilitate liver transplantation procedures.

15.
NMR Biomed ; 26(9): 1089-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23417762

RESUMEN

The amelioration of secondary neurological damage is among the most important therapeutic goals for patients with intracerebral hemorrhage (ICH). Secondary injury of the ipsilateral substantia nigra (SN) and pyramidal tract (PY) is common after cerebral stroke. Such injury has been characterized previously by anatomical or diffusion MRI, but not in a comprehensive manner, and the knowledge regarding the contralateral changes is relatively poor. This study examined longitudinally both contralateral and ipsilateral SN and PY changes following experimental ICH with diffusion tensor imaging (DTI) and histology. ICH was induced in 14 Sprague-Dawley rats by the infusion of collagenase into the right striatum. Four-shot, spin-echo, echo-planar DTI was performed at 7 T with a b value of 1000 s/mm(2) and 30 diffusion gradient directions at 3.5 h and days 1, 3, 7, 14, 42 and 120 after ICH. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ// ) and radial diffusivity (λ┴ ) were measured in SN and PY accordingly. Two to three rats were sacrificed at days 3, 7, 42 and 120 for histology. The contralateral SN showed an increase in λ// with perivascular enlargement during the first 3 days after ICH. The ipsilateral SN showed increases in FA, λ// , λ┴ and MD at day 1, dramatic decreases at day 3 with neuronal degeneration and neuropil vacuolation, and subsequent gradual normalization. The contralateral PY showed diffusivity decreases at day 1. The ipsilateral PY showed early decreases and then late increases in MD and λ┴, and continuously decreasing FA and λ// with progressive axonal loss and demyelination. In summary, DTI revealed early bilateral changes in SN and PY following ICH. The evolution of the ipsilateral parameters correlated with the histological findings. In the ipsilateral PY, λ// and λ┴ changes indicated evolving and complex pathological processes underlying the monotonic FA decrease. These results support the use of quantitative multiparametric DTI for the evaluation of SN and PY injuries in clinical and preclinical investigations of ICH.


Asunto(s)
Hemorragia Cerebral/patología , Imagen de Difusión Tensora , Tractos Piramidales/patología , Sustancia Negra/patología , Animales , Femenino , Hematoma/patología , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Brain Res Bull ; 200: 110683, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301482

RESUMEN

Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ceftriaxona/farmacología , Microglía/metabolismo , Sinaptofisina/metabolismo , Ratones Transgénicos , Hipocampo/metabolismo , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Macrófagos/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Péptidos beta-Amiloides/metabolismo
17.
Neuroimage ; 59(3): 2274-83, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21985904

RESUMEN

The rodents are an excellent model for understanding the development and plasticity of the visual system. In this study, we explored the feasibility of Mn-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) at 7 T for in vivo and longitudinal assessments of the retinal and callosal pathways in normal neonatal rodent brains and after early postnatal visual impairments. Along the retinal pathways, unilateral intravitreal Mn2+ injection resulted in Mn2+ uptake and transport in normal neonatal visual brains at postnatal days (P) 1, 5 and 10 with faster Mn2+ clearance than the adult brains at P60. The reorganization of retinocollicular projections was also detected by significant Mn2+ enhancement by 2%-10% in the ipsilateral superior colliculus (SC) of normal neonatal rats, normal adult mice and adult rats after neonatal monocular enucleation (ME) but not in normal adult rats or adult rats after monocular deprivation (MD). DTI showed a significantly higher fractional anisotropy (FA) by 21% in the optic nerve projected from the remaining eye of ME rats compared to normal rats at 6 weeks old, likely as a result of the retention of axons from the ipsilaterally uncrossed retinal ganglion cells, whereas the anterior and posterior retinal pathways projected from the enucleated or deprived eyes possessed lower FA after neonatal binocular enucleation (BE), ME and MD by 22%-56%, 18%-46% and 11%-15% respectively compared to normal rats, indicative of neurodegeneration or immaturity of white matter tracts. Along the visual callosal pathways, intracortical Mn2+ injection to the visual cortex of BE rats enhanced a larger projection volume by about 74% in the V1/V2 transition zone of the contralateral hemisphere compared to normal rats, without apparent DTI parametric changes in the splenium of corpus callosum. This suggested an adaptive change in interhemispheric connections and spatial specificity in the visual cortex upon early blindness. The results of this study may help determine the mechanisms of axonal uptake and transport, microstructural reorganization and functional activities in the living visual brains during development, diseases, plasticity and early interventions in a global and longitudinal setting.


Asunto(s)
Cuerpo Calloso/anatomía & histología , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Manganeso , Plasticidad Neuronal/fisiología , Retina/anatomía & histología , Vías Visuales/anatomía & histología , Animales , Animales Recién Nacidos , Anisotropía , Ceguera/patología , Encéfalo/anatomía & histología , Encéfalo/patología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/patología , Interpretación Estadística de Datos , Enucleación del Ojo , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Longitudinales , Terminaciones Nerviosas/fisiología , Terminaciones Nerviosas/ultraestructura , Embarazo , Ratas , Ratas Sprague-Dawley , Retina/crecimiento & desarrollo , Retina/patología , Células Ganglionares de la Retina/fisiología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/patología
18.
Neuroimage ; 61(4): 978-86, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22445952

RESUMEN

Tonotopy, the topographic encoding of sound frequency, is the fundamental property of the auditory system. Invasive techniques lack the spatial coverage or frequency resolution to rigorously investigate tonotopy. Conventional auditory fMRI is corrupted by significant image distortion, sporadic acoustic noise and inadequate frequency resolution. We developed an efficient and high fidelity auditory fMRI method that integrates continuous frequency sweeping stimulus, distortion free MRI sequence with stable scanner noise and Fourier analysis. We demonstrated this swept source imaging (SSI) in the rat inferior colliculus and obtained tonotopic maps with ~2 kHz resolution and 40 kHz bandwidth. The results were vastly superior to those obtained by conventional fMRI mapping approach and in excellent agreement with invasive findings. We applied SSI to examine tonotopic injury following developmental noise exposure and observed that the tonotopic organization was significantly disrupted. With SSI, we also observed the subtle effects of sound pressure level on tonotopic maps, reflecting the complex neuronal responses associated with asymmetric tuning curves. This in vivo and noninvasive technique will greatly facilitate future investigation of tonotopic plasticity and disorders and auditory information processing. SSI can also be adapted to study topographic organization in other sensory systems such as retinotopy and somatotopy.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Colículos Inferiores/fisiología , Imagen por Resonancia Magnética/métodos , Estimulación Acústica , Animales , Ratas , Ratas Sprague-Dawley
19.
Magn Reson Med ; 68(4): 1202-10, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213133

RESUMEN

Chromium (Cr) has been used histologically to stabilize lipid fractions in the retina and is suggested to enhance oxidizable lipids in brain MRI. This study explored the feasibility, sensitivity, and specificity of in vivo chromium-enhanced MRI of retinal lipids by determining its spatiotemporal profiles and toxic effect after intravitreal Cr(VI) injection to normal adult rats. One day after 3 µL Cr(VI) administration at 1-100 mM, the retina exhibited a dose-dependent increase in T1-weighted hyperintensity until 50 mM. Time-dependently, significant T1-weighted hyperintensity persisted up to 2 weeks after 10 mM Cr(VI) administration. Three-dimensional chromium-enhanced MRI of ex vivo normal eyes at isotropic 50-µm resolution showed at least five alternating bands across retinal layers, with the outermost layer being the brightest. This agreed with histology indicating alternating lipid contents with the highest level in the photoreceptor layer of the outer retina. Although Cr(VI) reduction may induce oxidative stress and depolymerize microtubules, manganese-enhanced MRI after chromium-enhanced MRI showed a dose-dependent effect of Cr toxicity on manganese uptake and axonal transport along the visual pathway. These results potentiated future longitudinal chromium-enhanced MRI studies on retinal lipid metabolism upon further optimization of Cr doses with visual cell viability.


Asunto(s)
Cromo/farmacocinética , Metabolismo de los Lípidos/fisiología , Imagen por Resonancia Magnética/métodos , Retina/anatomía & histología , Retina/metabolismo , Retinoscopía/métodos , Animales , Cromo/efectos adversos , Medios de Contraste/efectos adversos , Relación Dosis-Respuesta a Droga , Aumento de la Imagen/métodos , Imagen Molecular/métodos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Retina/efectos de los fármacos , Sensibilidad y Especificidad
20.
J Sep Sci ; 35(18): 2484-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22930563

RESUMEN

A method based on ultrasound-assisted cloud point extraction (CPE) was developed for the determination of phenolic compounds in water samples by high-performance liquid chromatography coupled with diode array detection (DAD) (HPLC-DAD). A nonionic surfactant, Tergitol 15-S-7, was chosen as the surfactant. The parameters affecting the CPE efficiency, such as Tergitol 15-S-7 concentration, salt concentration, extraction temperature, incubation time, centrifugation time, ultrasonic time, sample pH, and dilution solvent were systematically evaluated and optimized. Under the optimum experimental conditions, the linear regression coefficients of the standard curves were greater than 0.9986 and the limits of detection were in the range of 1.7-6.0 µg/L. The method was shown to be reproducible and reliable with intraday and interday relative standard deviations lower than 4.0 and 5.8%, respectively. The recoveries for the addition of different concentrations of phenolic compounds to water samples were in the range of 81.1-109.4%.


Asunto(s)
Fraccionamiento Químico , Fenoles/análisis , Poloxaleno/química , Tensoactivos/química , Ultrasonido , Contaminantes Químicos del Agua/química , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA