Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 281: 116596, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896899

RESUMEN

Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.

2.
Opt Express ; 31(19): 31610-31621, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710675

RESUMEN

Optical vortex beams, with phase singularity characterized by a topological charge (TC), introduces a new dimension for optical communication, quantum information, and optical light manipulation. However, the evaluation of TCs after beam propagation remains a substantial challenge, impeding practical applications. Here, we introduce vortices in lateral arrays (VOILA), a novel spatial multiplexing approach that enables simultaneous transmission of a lateral array of multiple vortices. Leveraging advanced learning techniques, VOILA effectively decodes TCs, even in the presence of strong optical nonlinearities simulated experimentally. Notably, our approach achieves substantial improvements in single-shot bandwidth, surpassing single-vortex scheme by several orders of magnitude. Furthermore, our system exhibits precise fractional TC recognition in both linear and nonlinear regimes, providing possibilities for high-bandwidth communication. The capabilities of VOILA promise transformative contributions to optical information processing and structured light research, with significant potential for advancements in diverse fields.

3.
Ecotoxicol Environ Saf ; 266: 115576, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837699

RESUMEN

Cadmium (Cd), one of the most toxic heavy metals, has been extensively studied by environmental scientists because of its detrimental effects on plants, animals, and humans. Increased industrial activity has led to environmental contamination with Cd. Cadmium can enter the food chain and pose a potential human health risk. Therefore, reducing the accumulation of Cd in plant species and enhancing their detoxification abilities are crucial for remediating heavy metal pollution in contaminated areas. One innovative technique is nano-phytoremediation, which employs nanomaterials ranging from 1 to 100 nm in size to mitigate the accumulation and detrimental effects of Cd on plants. Although extensive research has been conducted on using nanomaterials to mitigate Cd toxicity in plants, it is important to note that the mechanism of action varies depending on factors such as plant species, level of Cd concentration, and type of nanomaterials employed. This review aimed to consolidate and organize existing data, providing a comprehensive overview of the effects and mechanisms of nanomaterials in enhancing plant resistance to Cd. In particular, its deep excavation the mechanisms of detoxification heavy metals of nanomaterials by plants, including regulating Cd uptake and distribution, enhancing antioxidant capacity, regulating gene expression, and regulating physiological metabolism. In addition, this study provides insights into future research directions in this field.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Humanos , Cadmio/metabolismo , Contaminantes del Suelo/análisis , Metales Pesados/metabolismo , Plantas/metabolismo , Biodegradación Ambiental
4.
Opt Express ; 26(6): 7693-7700, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609321

RESUMEN

Similar to coherent light passing through a scattering medium, the propagation of coherent light through a multi-mode fiber (MMF) will result in a random speckle field. For a non-polarization maintaining MMF, the randomization can be observed not only in the intensity distribution, but also in the polarization state. In this paper, we propose a new technique known as phase combination to control the optical field for the light passing through the MMF. We show that, based on this new technique, the random speckle pattern can be modulated into an intensity distribution of two bright focal spots with mutually perpendicular polarization by only one polarizer. In particular, the intensity distribution of these two focal spots can be quantitatively controlled. This technique may find applications in medical imaging, nonlinear optics and optical communication etc.

5.
Sci Total Environ ; 869: 161751, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690104

RESUMEN

Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/metabolismo , Nicotiana , Fotosíntesis , Clorofila/metabolismo , Antioxidantes/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA