Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 31(43): 435706, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-32559756

RESUMEN

In this study, a nonaqueous method for the synthesis of size-controlled highly crystalline zinc ferrite/reduced graphene oxide (ZFO/rGO) aerogel was provided by using benzyl alcohol as the medium. In our findings, benzyl alcohol was introduced not only as the solvent, but the structure-directing agent and strong reducing agent during the nucleation and growth of ZnFe2O4 nanoparticles (NPs). The characterization analysis indicated that ZnFe2O4 NPs were immobilized on the multilayer rGO with a controllable size of 12 nm. Moreover, the 3D ZFO/rGO aerogel shows excellent electrochemical property as a facile electrochemical sensor for the detection of p-nitrophenol (p-NP). The ZFO/rGO electrochemical sensing offers the advantages of wide linear range (1-500 µmol l-1), excellent sensitivity (23.985 mA mM-1 cm-2), good stability and selectivity (<8.8%). In addition, the possible reaction mechanism of 3D ZFO/rGO aerogel was explained during the detection process under acidic condition. Significantly, our results not only provided insight into the possible reaction mechanism of 3D ZFO/rGO nanocomposite, but proposed the way for the synthesis of highly crystalline materials through a benzyl alcohol-mediated method.

2.
Angew Chem Int Ed Engl ; 59(14): 5706-5711, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31990450

RESUMEN

Noble metal aerogels (NMAs) are an emerging class of porous materials. Embracing nano-sized highly-active noble metals and porous structures, they display unprecedented performance in diverse electrocatalytic processes. However, various impurities, particularly organic ligands, are often involved in the synthesis and remain in the corresponding products, hindering the investigation of the intrinsic electrocatalytic properties of NMAs. Here, starting from laser-generated inorganic-salt-stabilized metal nanoparticles, various impurity-free NMAs (Au, Pd, and Au-Pd aerogels) were fabricated. In this light, we demonstrate not only the intrinsic electrocatalytic properties of NMAs, but also the prominent roles played by ligands in tuning electrocatalysis through modulating the electron density of catalysts. These findings may offer a new dimension to engineer and optimize the electrocatalytic performance for various NMAs and beyond.

3.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475342

RESUMEN

Covalent Organic Frameworks (COFs), with their intrinsic structural regularity and modifiable chemical functionality, have burgeoned as a pivotal material in the realm of photocatalytic hydrogen peroxide (H2O2) synthesis. This article reviews the recent advancements and multifaceted approaches employed in using the unique properties of COFs for high-efficient photocatalytic H2O2 production. We first introduced COFs and their advantages in the photocatalytic synthesis of H2O2. Subsequently, we spotlight the principles and evaluation of photocatalytic H2O2 generation, followed by various strategies for the incorporation of active sites aiming to optimize the separation and transfer of photoinduced charge carriers. Finally, we explore the challenges and future prospects, emphasizing the necessity for a deeper mechanistic understanding and the development of scalable and economically viable COF-based photocatalysts for sustainable H2O2 production.

4.
Front Chem ; 10: 1071274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569965

RESUMEN

The practical application of splitting water to generate hydrogen is to a large extent hindered by an oxygen evolution reaction (OER) process. Electrocatalysts with low-cost, high activity, and durability are essential for the low kinetic threshold of the OER. Despite the high active performances of noble metal compound electrocatalysts like IrO2 and RuO2, they are heavily restricted by the high cost and scarcity of noble metal elements. In this context, noble-metal-free electrocatalysts have acquired increasing significance in recent years. So far, a broad spectrum of noble-metal-free electrocatalysts has been developed for improved OER performance. In this review, three types of electrolysis and some evaluation criteria are introduced, followed by recent progress in designing and synthesizing noble-metal-free alkaline OER electrocatalysts, with the classification of metal oxides/(oxy)hydroxides, carbon-based materials, and metal/carbon hybrids. Finally, perspectives are also provided on the future development of the alkaline OER on active sites and stability of electrocatalysts.

5.
Nat Commun ; 11(1): 1590, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221287

RESUMEN

Amongst various porous materials, noble metal aerogels attract wide attention due to their concurrently featured catalytic properties and large surface areas. However, insufficient understanding and investigation of key factors (e.g. reductants and ligands) in the fabrication process limits on-target design, impeding material diversity and available applications. Herein, unveiling multiple roles of reductants, we develop an efficient method, i.e. the excessive-reductant-directed gelation strategy. It enables to integrate ligand chemistry for creating gold aerogels with a record-high specific surface area (59.8 m2 g-1), and to expand the composition to all common noble metals. Moreover, we demonstrate impressive electrocatalytic performance of these aerogels for the ethanol oxidation and oxygen evolution reaction, and discover an unconventional organic-ligand-enhancing effect. The present work not only enriches the composition and structural diversity of noble metal aerogels, but also opens up new dimensions for devising efficient electrocatalysts for broad material systems.

6.
Matter ; 2(4): 908-920, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32270137

RESUMEN

As an emerging class of porous materials, noble metal aerogels (NMAs) have drawn tremendous attention and displayed unprecedented potential in diverse fields. However, the development of NMAs is impeded by the fabrication methods because of their time- and cost-consuming procedures, limited generality, and elusive understanding of the formation mechanisms. Here, by revealing the self-healing behavior of noble metal gels and applying it in the gelation process at a disturbing environment, an unconventional and conceptually new strategy, i.e., a disturbance-promoted gelation method, is developed by introducing an external force field. It overcomes the diffusion limitation in the gelation process, thus producing monolithic gels within 1-10 min at room temperature, 2-4 orders of magnitude faster than for most reported methods. Moreover, versatile NMAs are acquired by using this method, and their superior (photo-)electrocatalytic properties are demonstrated for the first time in light of combined catalytic and optic properties.

7.
ACS Nano ; 13(9): 10386-10396, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31430122

RESUMEN

All inorganic lead halide perovskite nanocrystals (PNCs) typically suffer from poor stability against moisture and UV radiation as well as degradation during thermal treatment. The stability of PNCs can be significantly enhanced through polymer encapsulation, often accompanied by a decrease of photoluminescence quantum yield (PLQY) due to the loss of highly dynamic oleylamine/oleic acid (OLA/OA) ligands. Herein, we propose a solution for this problem by utilizing partially hydrolyzed poly(methyl methacrylate) (h-PMMA) and highly branched poly(ethylenimine) (b-PEI) as double ligands stabilizing the PNCs already during the mechanochemical synthesis (grinding). The hydrophobic polymer of h-PMMA imparts excellent film-forming properties and water stability to the resulting NC-polymer composite. In its own turn, the b-PEI forms an amino-rich, strongly binding ligand layer on the surface of the PNCs being responsible for the significant improvement of the PLQY and the stability of the resulting material. Moreover, the introduction of b-PEI promotes a partial phase conversion from CsPbBr3 to CsPb2Br5 to obtain CsPbBr3/CsPb2Br5 nanocrystals with a core-shell-like structure. As-prepared PNCs solutions are directly processable as inks, while their PLQY drops only slightly from 75% in colloidal solution to 65% in films. Moreover, the final PNC-polymer film exhibits excellent stability against water, heat, and ultraviolet light irradiation. These superior properties allowed us to fabricate a proof of concept thin film OLED with h-PMMA/b-PEI-stabilized PNCs as an easily processable, narrowly emitting color conversion composite material.

8.
J Phys Chem Lett ; 10(14): 4025-4031, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31259561

RESUMEN

We demonstrate high-mobility solution-processed inorganic field-effect transistors (FETs) with ultra-short channel (USC) length using semiconductor CdSe nanocrystals (NCs). Capping of the NCs with hybrid inorganic-organic CdCl3--butylamine ligands enables coarsening of the NCs during annealing at a moderate temperature, resulting in the devices having good transport characteristics with electron mobilities in the saturation regime reaching 8 cm2 V-1 s-1. Solution-based processing of the NCs and fabrication of thin films involve neither harsh conditions nor the use of hydrazine. Employing photolithographic methods, we fabricated FETs with a vertical overlap of source and drain electrodes to achieve a submicrometer channel length. To the best of our knowledge, this is the first report on an USC FET based on colloidal semiconductor NCs. Because of a short channel length, the FETs show a normalized transconductance of 4.2 m V-1 s-1 with a high on/off ratio of 105.

9.
Sci Adv ; 5(5): eaaw4590, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139750

RESUMEN

Noble metal foams (NMFs) are a new class of functional materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in diverse fields. Among reported synthetic methods, the sol-gel approach manifests overwhelming advantages for versatile synthesis of nanostructured NMFs (i.e., noble metal aerogels) under mild conditions. However, limited gelation methods and elusive formation mechanisms retard structure/composition manipulation, hampering on-demand design for practical applications. Here, highly tunable NMFs are fabricated by activating specific ion effects, enabling various single/alloy aerogels with adjustable composition (Au, Ag, Pd, and Pt), ligament sizes (3.1 to 142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation is also demonstrated. This study provides a conceptually new approach to fabricate and manipulate NMFs and an overall framework for understanding the gelation mechanism, paving the way for on-target design of NMFs and investigating structure-performance relationships for versatile applications.

10.
Nanoscale ; 11(41): 19370-19379, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31173035

RESUMEN

In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V-1 s-1.

11.
Adv Mater ; 28(21): 4156-61, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27007083

RESUMEN

The combination of high desalination efficiency, negligible draw-solute leakage, nontoxicity, ease of regeneration, and effective separation to produce liquid water makes the smart draw agents developed here highly suited for forward-osmosis desalination.

12.
Colloids Surf B Biointerfaces ; 116: 531-6, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24572496

RESUMEN

We have synthesized poly(l-lactide-co-2-(2-methoxyethoxy)ethyl methacrylate) (LA-co-MEO2MA) containing both degradable and protein resistant units via hybrid copolymerization with (1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phophoranylidenamino]-2Λ5,Λ5-catenadi(phosphazene) (t-BuP4) as the catalyst. Nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) show that LA-co-MEO2MA is a random copolymer. The studies of quartz crystal microbalance with dissipation (QCM-D) demonstrate that the copolymer enzymaticlly degrades much faster than poly(l-lactide) (PLA) homopolymer due to its lower crystallinity. We have also investigated the adsorption of bovine serum albumin (BSA), lysozyme or fibrinogen on a LA-co-MEO2MA surface in real time by use of QCM-D and surface plasmon resonance (SPR). Our studies reveal that the polymer is protein resistant depending on MEO2MA content. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay experiments demonstrate that the polymer has a low cytotoxicity.


Asunto(s)
Antineoplásicos/química , Fibrinógeno/química , Metacrilatos/química , Muramidasa/química , Poliésteres/química , Albúmina Sérica Bovina/química , Adsorción , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bovinos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Fibrinógeno/metabolismo , Células HeLa , Humanos , Metacrilatos/metabolismo , Metacrilatos/farmacología , Muramidasa/metabolismo , Poliésteres/metabolismo , Poliésteres/farmacología , Albúmina Sérica Bovina/metabolismo , Relación Estructura-Actividad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA