Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Pregnancy Childbirth ; 24(1): 371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750445

RESUMEN

BACKGROUND: To explore a method for screening and diagnosing neonatal congenital heart disease (CHD) applicable to grassroots level, evaluate the prevalence of CHD, and establish a hierarchical management system for CHD screening and treatment at the grassroots level. METHODS: A total of 24,253 newborns born in Tang County between January 2016 and December 2020 were consecutively enrolled and screened by trained primary physicians via the "twelve-section ultrasonic screening and diagnosis method" (referred to as the "twelve-section method"). Specialized staff from the CHD Screening and Diagnosis Center of Hebei Children's Hospital regularly visited the local area for definite diagnosis of CHD in newborns who screened positive. Newborns with CHD were managed according to the hierarchical management system. RESULTS: The centre confirmed that, except for 2 newborns with patent ductus arteriosus missed in the diagnosis of ventricular septal defect combined with severe pulmonary hypertension, newborns with other isolated or concomitant simple CHDs were identified at the grassroots level. The sensitivity, specificity and diagnostic coincidence rate of the twelve-section method for screening complex CHD were 92%, 99.6% and 84%, respectively. A total of 301 children with CHD were identified. The overall CHD prevalence was 12.4‰. According to the hierarchical management system, 113 patients with simple CHD recovered spontaneously during local follow-up, 48 patients continued local follow-up, 106 patients were referred to the centre for surgery (including 17 patients with severe CHD and 89 patients with progressive CHD), 1 patient died without surgery, and 8 patients were lost to follow-up. Eighteen patients with complex CHD were directly referred to the centre for surgery, 3 patients died without surgery, and 4 patients were lost to follow-up. Most patients who received early intervention achieved satisfactory results. The mortality rate of CHD was approximately 28.86 per 100,000 children. CONCLUSIONS: The "twelve-section method" is suitable for screening neonatal CHD at the grassroots level. The establishment of a hierarchical management system for CHD screening and treatment is conducive to the scientific management of CHD, which has important clinical and social significance for early detection, early intervention, reduction in mortality and improvement of the prognosis of complex and severe CHDs.


Asunto(s)
Cardiopatías Congénitas , Tamizaje Neonatal , Humanos , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/diagnóstico por imagen , Recién Nacido , China/epidemiología , Tamizaje Neonatal/métodos , Femenino , Masculino , Prevalencia , Sensibilidad y Especificidad
2.
Echocardiography ; 38(1): 89-96, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33594857

RESUMEN

OBJECTIVE: This study assessed whether ultrasonic speckle-tracking imaging (STI) could help evaluate right ventricular systolic function in repaired Tetralogy of Fallot (TOF) with different pulmonary artery branch angles. METHODS: We retrospectively evaluated 64 patients who underwent surgery for TOF and 60 normal children. The angle between the left pulmonary artery and main pulmonary artery was measured using echocardiography and computed tomography angiography (CTA). Furthermore, STI was used to record the global longitudinal strain of the four-chamber view (GLS4), the global longitudinal strain of the two-chamber view (GLS2), and the global longitudinal strain of the right ventricle (RVGLS). RESULTS: The GLS4, GLS2, and RVGLS values in the TOF groups with different pulmonary artery branch angles were significantly lower than those in the control group. Furthermore, the GLS2 and RVGLS values were significantly lower for angles of 90-100° and <90° (vs >100°). Multivariate linear regression analyses revealed that pulmonary regurgitation and the angle between the left and main pulmonary arteries were two important factors affecting RVGLS. The Bland-Altman consistency test revealed good agreement regarding the pulmonary artery branch angles measured using echocardiography and CTA. CONCLUSION: In patients with TOF, the RVGLS was lower for acute left pulmonary artery angulation than for round and blunt left pulmonary artery angulation. The angle of the pulmonary artery branches was an important factor affecting RVGLS. Echocardiography can be used to measure the angle of the pulmonary artery branches, which provides valuable information for surgical correction of pulmonary artery morphology.


Asunto(s)
Arteria Pulmonar , Tetralogía de Fallot , Niño , Humanos , Arteria Pulmonar/diagnóstico por imagen , Estudios Retrospectivos , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/cirugía , Ultrasonido , Función Ventricular Derecha
3.
Hum Mol Genet ; 27(22): 3986-3998, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30395268

RESUMEN

Adolescent idiopathic scoliosis (AIS) is the most common musculoskeletal disorder of childhood development. The genetic architecture of AIS is complex, and the great majority of risk factors are undiscovered. To identify new AIS susceptibility loci, we conducted the first genome-wide meta-analysis of AIS genome-wide association studies, including 7956 cases and 88 459 controls from 3 ancestral groups. Three novel loci that surpassed genome-wide significance were uncovered in intragenic regions of the CDH13 (P-value_rs4513093 = 1.7E-15), ABO (P-value_ rs687621 = 7.3E-10) and SOX6 (P-value_rs1455114 = 2.98E-08) genes. Restricting the analysis to females improved the associations at multiple loci, most notably with variants within CDH13 despite the reduction in sample size. Genome-wide gene-functional enrichment analysis identified significant perturbation of pathways involving cartilage and connective tissue development. Expression of both SOX6 and CDH13 was detected in cartilage chondrocytes and chromatin immunoprecipitation sequencing experiments in that tissue revealed multiple HeK27ac-positive peaks overlapping associated loci. Our results further define the genetic architecture of AIS and highlight the importance of vertebral cartilage development in its pathogenesis.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Cadherinas/genética , Enfermedades Musculoesqueléticas/genética , Factores de Transcripción SOXD/genética , Escoliosis/genética , Adolescente , Niño , Etnicidad/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Enfermedades Musculoesqueléticas/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Escoliosis/fisiopatología , Adulto Joven
4.
J Hum Genet ; 64(5): 493-498, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30787423

RESUMEN

Adolescent idiopathic scoliosis (AIS) is the most common type of scoliosis. Controlling its curve progression is the most important clinical task. Although recent genome-wide association studies (GWASs) identified several susceptibility loci associated with the development of AIS, the etiology of curve progression has been still unknown. Our previous GWAS has identified that rs12946942 showed significant association with severe AIS. To confirm the association, we conducted an international meta-analysis using four cohorts with different ethnicity. We analyzed 2272 severe AIS cases and 13,859 controls in total, and found the replication of significant association of rs12946942 (combined P = 7.23×10-13; odds ratio = 1.36, 95% confidence interval = 1.25-1.49). In silico analyses suggested that SOX9 is the most likely susceptibility gene for AIS curve progression in the locus.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo Genético , Factor de Transcripción SOX9/genética , Escoliosis/etnología , Escoliosis/genética , Adolescente , Femenino , Humanos , Masculino
5.
Funct Integr Genomics ; 18(4): 411-424, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29564647

RESUMEN

Host genetic factors play an important role in diverse host outcomes after influenza A (H7N9) infection. Studying differential responses of inbred mouse lines with distinct genetic backgrounds to influenza virus infection could substantially increase our understanding of the contributory roles of host genetic factors to disease severity. Here, we utilized an integrated approach of mRNA-seq and miRNA-seq to investigate the transcriptome expression and regulation of host genes in C57BL/6J and DBA/2J mouse strains during influenza virus infection. The differential pathogenicity of influenza virus in C57BL/6J and DBA/2J has been fully demonstrated through immunohistochemical staining, histopathological analyses, and viral replication assessment. A transcriptional molecular signature correlates to differential host response to infection has been uncovered. With the introduction of temporal expression pattern analysis, we demonstrated that host factors responsible for influenza virus replication and host-virus interaction were significantly enriched in genes exhibiting distinct temporal dynamics between different inbred mouse lines. A combination of time-series expression analysis and temporal expression pattern analysis has provided a list of promising candidate genes for future studies. An integrated miRNA regulatory network from both mRNA-seq and miRNA-seq revealed several regulatory modules responsible for regulating host susceptibilities and disease severity. Overall, a comprehensive framework for analyzing host susceptibilities to influenza infection was established by integrating mRNA-seq and miRNA-seq data of inbred mouse lines. This work suggests novel putative molecular targets for therapeutic interventions in seasonal and pandemic influenza.


Asunto(s)
Predisposición Genética a la Enfermedad , MicroARNs/genética , Infecciones por Orthomyxoviridae/genética , ARN Mensajero/genética , Animales , Interacciones Huésped-Patógeno , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Infecciones por Orthomyxoviridae/virología
6.
Hum Genet ; 137(6-7): 553-567, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30019117

RESUMEN

With the recent advance in genome-wide association studies (GWAS), disease-associated single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) have been extensively reported. Accordingly, the issue of incorrect identification of recombination events that can induce the distortion of multi-allelic or hemizygous variants has received more attention. However, the potential distorted calculation bias or significance of a detected association in a GWAS due to the coexistence of CNVs and SNPs in the same genomic region may remain under-recognized. Here we performed the association study within a congenital scoliosis (CS) cohort whose genetic etiology was recently elucidated as a compound inheritance model, including mostly one rare variant deletion CNV null allele and one common variant non-coding hypomorphic haplotype of the TBX6 gene. We demonstrated that the existence of a deletion in TBX6 led to an overestimation of the contribution of the SNPs on the hypomorphic allele. Furthermore, we generalized a model to explain the calculation bias, or distorted significance calculation for an association study, that can be 'induced' by CNVs at a locus. Meanwhile, overlapping between the disease-associated SNPs from published GWAS and common CNVs (overlap 10%) and pathogenic/likely pathogenic CNVs (overlap 99.69%) was significantly higher than the random distribution (p < 1 × 10-6 and p = 0.034, respectively), indicating that such co-existence of CNV and SNV alleles might generally influence data interpretation and potential outcomes of a GWAS. We also verified and assessed the influence of colocalizing CNVs to the detection sensitivity of disease-associated SNP variant alleles in another adolescent idiopathic scoliosis (AIS) genome-wide association study. We proposed that detecting co-existent CNVs when evaluating the association signals between SNPs and disease traits could improve genetic model analyses and better integrate GWAS with robust Mendelian principles.


Asunto(s)
Anomalías Congénitas/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Escoliosis/genética , Adolescente , Anomalías Congénitas/fisiopatología , Femenino , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Haplotipos/genética , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Escoliosis/fisiopatología
7.
BMC Bioinformatics ; 18(1): 90, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28166716

RESUMEN

BACKGROUND: Recently, several tools have been designed for human leukocyte antigen (HLA) typing using single nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) data. These tools provide high-throughput and cost-effective approaches for identifying HLA types. Therefore, tools for downstream association analysis are highly desirable. Although several tools have been designed for multi-allelic marker association analysis, they were designed only for microsatellite markers and do not scale well with increasing data volumes, or they were designed for large-scale data but provided a limited number of tests. RESULTS: We have developed a Python package called PyHLA, which implements several methods for HLA association analysis, to fill the gap. PyHLA is a tailor-made, easy to use, and flexible tool designed specifically for the association analysis of the HLA types imputed from genome-wide genotyping and NGS data. PyHLA provides functions for association analysis, zygosity tests, and interaction tests between HLA alleles and diseases. Monte Carlo permutation and several methods for multiple testing corrections have also been implemented. CONCLUSIONS: PyHLA provides a convenient and powerful tool for HLA analysis. Existing methods have been integrated and desired methods have been added in PyHLA. Furthermore, PyHLA is applicable to small and large sample sizes and can finish the analysis in a timely manner on a personal computer with different platforms. PyHLA is implemented in Python. PyHLA is a free, open source software distributed under the GPLv2 license. The source code, tutorial, and examples are available at https://github.com/felixfan/PyHLA.


Asunto(s)
Alelos , Biología Computacional/métodos , Antígenos HLA/genética , Programas Informáticos , Genoma Humano , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Lineales , Modelos Logísticos , Repeticiones de Microsatélite , Modelos Teóricos , Polimorfismo de Nucleótido Simple
8.
Biochem Biophys Res Commun ; 488(2): 340-347, 2017 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-28499871

RESUMEN

Malignant neoplasms exhibit an elevated rate of glycolysis and a high demand for glucose over normal cells. This characteristic can be exploited for in vivo imaging and tumor targeting examined. In this manuscript, we describe the synthesis of near-infrared (NIR) fluorochrome IR-822-labeled 2-amino-2-deoxy-d-glucose (DG) for optical imaging of tumors in mice. NIR fluorescent dye IR-820 was subsequently conjugated with 3-Mercaptopropionic acid and 2-amino-2-deoxy-d-glucose to form IR-822-DG. The cell experiments and acute toxicity studies demonstrated the low toxicity of IR-822-DG to normal cells/tissues. The dynamic behavior and targeting ability of IR-822-DG in normal mice was investigated with a NIR fluorescence imaging system. The in vitro and in vivo tumor targeting capabilities of IR-822-DG were evaluated in tumor cells and tumor bearing mice, respectively. Results demonstrated that IR-822-DG actively and efficiently accumulated at the site of the tumor. The probe also exhibited good photostability and excellent cell membrane permeability. The study indicates the broad applicability of IR-822-DG for tumors diagnosis, especially in the glucose-related pathologies.


Asunto(s)
Desoxiglucosa/química , Colorantes Fluorescentes/química , Neoplasias/diagnóstico , Animales , Línea Celular Tumoral , Desoxiglucosa/síntesis química , Colorantes Fluorescentes/síntesis química , Humanos , Ratones , Ratones Desnudos , Estructura Molecular
9.
J Med Genet ; 51(6): 401-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24721834

RESUMEN

BACKGROUND: Adolescent idiopathic scoliosis (AIS) is a common rotational deformity of the spine that presents in children worldwide, yet its etiology is poorly understood. Recent genome-wide association studies (GWAS) have identified a few candidate risk loci. One locus near the chromosome 10q24.31 LBX1 gene (OMIM #604255) was originally identified by a GWAS of Japanese subjects and replicated in additional Asian populations. To extend this result, and to create larger AIS cohorts for the purpose of large-scale meta-analyses in multiple ethnicities, we formed a collaborative group called the International Consortium for Scoliosis Genetics (ICSG). METHODS: Here, we report the first ICSG study, a meta-analysis of the LBX1 locus in six Asian and three non-Asian cohorts. RESULTS: We find significant evidence for association of this locus with AIS susceptibility in all nine cohorts. Results for seven cohorts containing both genders yielded P=1.22×10-43 for rs11190870, and P=2.94×10-48 for females in all nine cohorts. Comparing the regional haplotype structures for three populations, we refined the boundaries of association to a ∼25 kb block encompassing the LBX1 gene. The LBX1 protein, a homeobox transcription factor that is orthologous to the Drosophila ladybird late gene, is involved in proper migration of muscle precursor cells, specification of cardiac neural crest cells, and neuronal determination in developing neural tubes. CONCLUSIONS: Our results firmly establish the LBX1 region as the first major susceptibility locus for AIS in Asian and non-Hispanic white groups, and provide a platform for larger studies in additional ancestral groups.


Asunto(s)
Pueblo Asiatico/genética , Proteínas de Homeodominio/genética , Escoliosis/genética , Factores de Transcripción/genética , Adolescente , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple
10.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962965

RESUMEN

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Asunto(s)
Escoliosis , Animales , Humanos , Adolescente , Escoliosis/genética , Escoliosis/diagnóstico , Escoliosis/cirugía , Glicina/genética , Pez Cebra , Transmisión Sináptica
11.
Elife ; 122024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277211

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Asunto(s)
Escoliosis , Masculino , Animales , Niño , Ratones , Humanos , Femenino , Adolescente , Escoliosis/genética , Metaloproteinasa 3 de la Matriz/genética , Columna Vertebral , Factores de Transcripción/genética , Colágeno/genética , Variación Genética , Colágeno Tipo XI/genética
12.
J Infect Dis ; 206(4): 495-503, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22693232

RESUMEN

Infection due to 2009 pandemic H1N1 influenza A virus (A[H1N1]pdm09) is commonly manifested as mild infection but occasionally as severe pneumonia. We hypothesized that host genetic variations may contribute to disease severity. An initially small-scale genome-wide association study guided the selection of CD55 single-nucleotide polymorphisms in 425 Chinese patients with severe (n = 177) or mild (n = 248) disease. Carriers of rs2564978 genotype T/T were significantly associated with severe infection (odds ratio, 1.75; P = .011) under a recessive model, after adjustment for clinical confounders. An allele-specific effect on CD55 expression was revealed and ascribed to a promoter indel variation, which was in complete linkage disequilibrium with rs2564978. The promoter variant with deletion exhibited significantly lower transcriptional activity. We further demonstrated that CD55 can protect respiratory epithelial cells from complement attack. Additionally, A(H1N1)pdm09 infection promoted CD55 expression. In conclusion, CD55 polymorphisms are associated with severe A(H1N1)pdm09 infection. CD55 may exert a substantial impact on the disease severity of A(H1N1)pdm09 infection.


Asunto(s)
Antígenos CD55/genética , Predisposición Genética a la Enfermedad , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/genética , Gripe Humana/patología , Polimorfismo de Nucleótido Simple , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD55/inmunología , China , Femenino , Frecuencia de los Genes , Humanos , Mutación INDEL , Gripe Humana/inmunología , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Índice de Severidad de la Enfermedad , Adulto Joven
13.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292598

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

14.
Biochem Biophys Res Commun ; 422(3): 363-8, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22564732

RESUMEN

Large numbers of samples and marker loci were tested for association in genome-wide association studies (GWAS). Hence, quality control (QC) by removing individuals or markers with low genotyping quality is of utmost importance to minimize potential false positive associations. IPGWAS was developed to facilitate the identification of the rational thresholds in QC of GWAS datasets, association analysis, Manhattan plot, quantile-quantile (QQ) plot, and format conversion for genetic analyses, such as meta-analysis, genotype phasing, and imputation. IPGWAS is a multiplatform application written in Perl with a graphical user interface (GUI) and available for free at http://sourceforge.net/projects/ipgwas/.


Asunto(s)
Estudio de Asociación del Genoma Completo , Control de Calidad , Programas Informáticos , Reacciones Falso Positivas , Polimorfismo de Nucleótido Simple
15.
J Hum Genet ; 57(4): 244-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22301463

RESUMEN

A study was conducted to validate the most significant single nucleotide polymorphism (SNP) from a genome-wide association study of Japanese adolescent idiopathic scoliosis (AIS) patients in an independent southern Chinese population. In total, 300 AIS patients fulfilled the clinical criteria and 788 controls with MRI scans of the spine were included in the replication study. We employed case-control analysis to study the association of SNP rs11190870 near LBX1 (ladybird homeobox 1) with AIS in a southern Chinese population. The results suggest that SNP rs11190870 is significantly associated with AIS (P=9.1 × 10(-10); odds ratio=1.85; 95% confidence interval=1.52-2.25). The results of this study confirm that SNP rs11190870 is associated with AIS.


Asunto(s)
Pueblo Asiatico/genética , Proteínas de Homeodominio/genética , Polimorfismo de Nucleótido Simple , Escoliosis/genética , Factores de Transcripción/genética , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Masculino , Oportunidad Relativa , Factores Sexuales , Adulto Joven
16.
Yi Chuan ; 34(6): 711-8, 2012 Jun.
Artículo en Zh | MEDLINE | ID: mdl-22698742

RESUMEN

BEX2 (Brain expressed X-linked protein 2), a 13 kDa protein, is highly expressed in brain and testis. It is reported that the protein expression of BEX2 dramatically alters during the embryo development, but little is known about its function. By means of yeast two-hybrid screening, we isolated that INI1/hSNF5 was a binding partner for BEX2, a key component of SWI/SNF chromosome remolding complex. GST Pull-down experiment interaction is physical and specific. Further analysis using truncated mutations demonstrated that the two partner for BEX2, a key component of SWI/SNF chromosome remolding complex. GST Pull-down experiment confirmed that BEX2 can interact with INI1/hSNF5 directly and specifically. Truncated mutations analysis further demonstrated that the two conserved reverse repeats sequences within INI1/hSNF5 were necessary for the interaction. Sub-cellular localization showed that both BEX2 and INI1/hSNF5 mainly localized in cell nucleus, which indicated that the interaction may be involved in the regulation of gene expression. Our experiments also showed that co-overexpressing of the two proteins affected cell cycle by increasing the cells in S phase, indicating that BEX2 could regulate cell cycle by interacting with INI1/hSNF5.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/fisiología , Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína SMARCB1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
PLoS One ; 17(6): e0269013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35653387

RESUMEN

Trapa bispinosa Roxb. is a traditional Chinese food which is well known for its medicinal properties. The shell of Trapa bispinosa has anticancer activity, maybe due to its high content of polyphenols. There are few studies on the chemical composition of Trapa bispinosa shells, then we isolated the active components from Trapa bispinosa shell and clarified the mechanism of its anticancer activity. One monomer compound was separated from the ethanol extract of the Trapa bispinosa shell by fractional extraction, silica gel, Sephadex LH-20 gel column chromatography and liquid phase separation. The structure, identified by NMR was 1,2,3,6-tetra-O-galloyl-ß-D-glucose. The results of the CCK-8 assay showed that 1,2,3,6-tetra-O-galloyl-ß-D-glucose could significantly inhibit the proliferation of gastric cancer SGC7901 cells, and the effect was close to that of 5-fluorouracil. Here, 1,2,3,6-tetra-O-galloyl-ß-D-glucose could affect the cell cycle of SGC7901 cells. At the dose of 200 µg/mL and an incubation time of 48 h, SGC7901 cells remained in the G1 phase, apoptosis occurred, the intracellular calcium ion concentration increased and the mitochondrial membrane potential decreased. Transcriptome sequencing analysis showed that the differentially expressed genes were mainly enriched in the P53 signalling pathway associated with apoptosis. The results of qPCR and Western blot showed that 1,2,3,6-tetra-O-galloyl-ß-D-glucose could induce apoptosis of SGC7901 cells by up-regulating the expression levels of P21, PUMA, PERP and IGF-BP3 genes, down-regulating the CyclinD gene, increasing the expression levels of cytochrome C, caspase-3, caspase-9 protein and decreasing that of the protein BCL-2.


Asunto(s)
Glucosa , Neoplasias Gástricas , Apoptosis , Glucosa/metabolismo , Humanos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Neoplasias Gástricas/tratamiento farmacológico
18.
Front Plant Sci ; 13: 926621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845685

RESUMEN

Fusarium head blight, mainly incited by Fusarium graminearum, is a devastating wheat disease worldwide. Diverse Fusarium head blight (FHB) resistant sources have been reported, but the resistance mechanisms of these sources remain to be investigated. FHB-resistant wheat germplasm often shows black necrotic lesions (BNLs) around the infection sites. To determine the relationship between BNL and FHB resistance, leaf tissue of a resistant wheat cultivar Sumai 3 was inoculated with four different F. graminearum isolates. Integrated metabolomic and transcriptomic analyses of the inoculated samples suggested that the phytohormone signaling, phenolamine, and flavonoid metabolic pathways played important roles in BNL formation that restricted F. graminearum extension. Exogenous application of flavonoid metabolites on wheat detached leaves revealed the possible contribution of flavonoids to BNL formation. Exogenous treatment of either salicylic acid (SA) or methyl jasmonate (MeJA) on wheat spikes significantly reduced the FHB severity. However, exogenous MeJA treatment prevented the BNL formation on the detached leaves of FHB-resistant wheat Sumai 3. SA signaling pathway influenced reactive oxygen species (ROS) burst to enhance BNL formation to reduce FHB severity. Three key genes in SA biosynthesis and signal transduction pathway, TaICS1, TaNPR1, and TaNPR3, positively regulated FHB resistance in wheat. A complex temporal interaction that contributed to wheat FHB resistance was detected between the SA and JA signaling pathways. Knowledge of BNLs extends our understanding of the molecular mechanisms of FHB resistance in wheat and will benefit the genetic improvement of wheat FHB resistance.

19.
Sci Total Environ ; 774: 145127, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33601163

RESUMEN

A huge amount of excess sludge is inevitably produced in wastewater treatment, and it is becoming more and more urgent to realize efficient sludge reduction. Discharge plasma oxidation was used to efficiently disintegrate excess sludge for sludge reduction in this study. Approximately 18.22% sludge disintegration and 27.8% reduction of total suspended solids (TSS) were achieved by discharge plasma treatment. The water content of the filter cake decreased from 81.9% to 76.0% and the bound water content decreased from 2.66 g/g dry solid to 0.73 g/g dry solid after treatment. The large quantities of reactive oxygen species (ROS) generated by discharge plasma played important roles in sludge disintegration by destroying flocs and promoting the transformation of organic substances. Concurrent cell lysis induced by ROS oxidation released intracellular organics and water into the liquid phase. The fraction of soluble extracellular polymer substances (S-EPS) was enhanced from 16.10% to 58.51%, whereas the tightly bound fraction was reduced from 70.62% to 28.91%. Migration and decomposition of EPS were the main processes for EPS changing at a low oxidation capacity, whereas cell lysis became important at a high oxidation capacity. In summary, the plasma treatment effectively improved sludge disintegration.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Oxidación-Reducción , Plasma , Eliminación de Residuos Líquidos , Agua
20.
EBioMedicine ; 69: 103446, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34157485

RESUMEN

BACKGROUND: Breast cancers can be divided into HER2-negative and HER2-positive subtypes according to different status of HER2 gene. Despite extensive studies connecting germline mutations with possible risk of HER2-negative breast cancer, the main category of breast cancer, it remains challenging to obtain accurate risk assessment and to understand the potential underlying mechanisms. METHODS: We developed a novel framework named Damage Assessment of Genomic Mutations (DAGM), which projects rare coding mutations and gene expressions into Activity Profiles of Signalling Pathways (APSPs). FINDINGS: We characterized and validated DAGM framework at multiple levels. Based on an input of germline rare coding mutations, we obtained the corresponding APSP spectrum to calculate the APSP risk score, which was capable of distinguish HER2-negative from HER2-positive cases. These findings were validated using breast cancer data from TCGA (AUC = 0.7). DAGM revealed that HER2 signalling pathway was up-regulated in germline of HER2-negative patients, and those with high APSP risk scores had exhibited immune suppression. These findings were validated using RNA sequencing, phosphoproteome analysis, and CyTOF. Moreover, using germline mutations, DAGM could evaluate the risk for HER2-negative breast cancer, not only in women carrying BRCA1/2 mutations, but also in those without known disease-associated mutations. INTERPRETATION: The DAGM can facilitate the screening of subjects at high risk of HER2-negative breast cancer for primary prevention. This study also provides new insights into the potential mechanisms of developing HER2-negative breast cancer. The DAGM has the potential to be applied in the prevention, diagnosis, and treatment of HER2-negative breast cancer. FUNDING: This work was supported by the National Key Research and Development Program of China (grant no. 2018YFC0910406 and 2018AAA0103302 to CZ); the National Natural Science Foundation of China (grant no. 81202076 and 82072939 to MY, 81871513 to KW); the Guangzhou Science and Technology Program key projects (grant no. 2014J2200007 to MY, 202002030236 to KW); the National Key R&D Program of China (grant no. 2017YFC1309100 to CL); Shenzhen Science and Technology Planning Project (grant no. JCYJ20170817095211560 574 to YN); and the Natural Science Foundation of Guangdong Province (grant no. 2017A030313882 to KW and S2013010012048 to MY); Hefei National Laboratory for Physical Sciences at the Microscale (grant no. KF2020009 to GN); and RGC General Research Fund (grant no. 17114519 to YQS).


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Receptor ErbB-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA