Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 58(24): 10717-10728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847549

RESUMEN

Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.


Asunto(s)
Amoníaco , Oxidación-Reducción , Rutenio , Amoníaco/química , Catálisis , Rutenio/química
2.
Environ Sci Technol ; 57(50): 21272-21283, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051813

RESUMEN

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.


Asunto(s)
Nanoestructuras , Cationes , Cobalto , Electrónica , Oxígeno
3.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992298

RESUMEN

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Asunto(s)
Compuestos de Mercurio , Mercurio , Selenio , Mercurio/química , Halogenación , Halógenos , Iones , Compuestos de Mercurio/química
4.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
5.
Ecotoxicol Environ Saf ; 191: 110145, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31954214

RESUMEN

Arsenic (As) and antimony (Sb) are listed as the priority pollutants by the U.S. Environmental Protection Agency (EPA) and the European Union (EU) due to their toxicity and potential carcinogenicity. It is necessary to investigate their adsorption over soil as such a behavior affects their mobility and bioavailability. In this study, the effect of pH on the adsorption of As(V) and Sb(V) by the black soil was investigated with three systems: the Single system, Binary system, and Sequence system. The operating pH was set at 4.0, 7.0 and 10.0. Based on the Langmuir isothermal and the pseudo-second-order kinetic models, the adsorption for As(V) was always better than Sb(V) in the whole pH range; the best adsorption performance for the two sorbates was achieved at pH of 4.0, followed by 7.0 and 10.0 in the three systems. The reasons could be that the atomic radius of arsenic is smaller than that of antimony, and the positively charged functional groups carried by the inorganic colloids in the soil contributed to binding with the negatively charged As(V)/Sb(V). A lower pH promoted the inorganic colloids to carry more positive charges. Compared to Single system, the maximum adsorption capacity (qm) and the initial adsorption rates (k2qe,cal2) of As(V) and Sb(V) in Binary system decreased obviously, suggesting competitive adsorption occurred when As(V) and Sb(V) coexisted. The findings of this workimprove the understanding of As(V)/Sb(V) adsorption behavior in soil under different situations and would facilitate a comprehensive evaluation on the risk assessment of arsenic and antimony.


Asunto(s)
Antimonio/análisis , Arsénico/análisis , Contaminantes del Suelo/análisis , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Suelo/química
6.
Ecotoxicol Environ Saf ; 181: 34-42, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31158721

RESUMEN

Antimony (Sb) is listed as a priority pollutant by European Union and U.S. Environmental Protection Agency. However, reports on its environmental behavior, particularly the sorption process in soil are still limited. In this paper, Sb(V) was selected as the sorbate and the black soil as the sorbent. The initial sorption rate (k2qe,cal2) was calculated to be 0.1254 mg g-1∙min-1 and the maximum sorption amount (qm) 57.33 mg g-1. Once the dissolved organic matter (DOM) was removed from the soil, the values of k2qe,cal2 and qm went down to 0.1066 mg g-1∙min-1 and 19.01 mg g-1, respectively. These results suggested that the existence of DOM significantly influenced the mass transfer rate and sorption amount of Sb(V) in soil. In order to find out the reason why DOM exerted such an influence, the binding interaction mechanism between Sb(V) and DOM was investigated under different pH values. The protein-like and humic-like substances as well as the functional groups of CO, phenol hydroxyl, C-O, C-H, C-X and sulfur/phosphorus contributed to the formation of DOM-Sb(V)-complexes under pH of 7.0, in which the humic-like substance and the functional groups containing oxygen showed higher binding affinity for Sb(V) than protein-like substance and other functional groups, respectively. The protein-like substance and some functional groups disappeared under pH of 4.0 and 10.0. Alkaline condition resulted in a bigger impact on reducing the number of functional groups than acid condition. It can be concluded that the strongest binding interaction occurred at pH of 7.0 then followed by 4.0 and 10.0. This paper might be helpful to further studying the environmental behavior of Sb(V) in soil.


Asunto(s)
Antimonio/análisis , Sustancias Húmicas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Adsorción , Antimonio/química , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/química , Espectrometría de Fluorescencia/métodos , Espectroscopía Infrarroja por Transformada de Fourier
7.
ACS Appl Mater Interfaces ; 15(20): 24701-24712, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167560

RESUMEN

Ruthenium (Ru)-based catalysts have been candidates in hydrochlorination for vinyl chloride monomer (VCM) production, yet they are limited by efficient acetylene (C2H2) utilization. The strong adsorption performance of HCl can deactivate Ru active sites which resulted in weak C2H2 adsorption and slow activation kinetics. Herein, we designed a channel that employed metal-organic framework (MOF)-encaged Ru single atoms to achieve rapid adsorption and activation of C2H2. Low-Ru (∼0.5 wt %) single-atom catalysts (named Ru-NC@MIL) were assembled by hydrogen-bonding nanotraps (the H-C≡C-Hδ+···Oδ- interactions between C2H2 and carboxylate groups/furan rings). Results confirmed that C2H2 could easily enter the encapsulation channels in an optimal mode perpendicular to the channel with a potential energy of 42.3 kJ/mol. The harvested C2H2 molecules can be quickly passed to Ru-N4 active sites for activation by stretching the length of carbon-carbon triple bonds (C≡C) to 1.212 Å. Such a strategy guaranteed >99% C2H2 conversion efficiency and >99% VCM selectivity. Moreover, a stable long-term (>150 h) catalysis with high efficiency (∼0.85 kgvcm/h/kgcat.) and a low deactivation constant (0.001 h-1) was also achieved. This work provides an innovative strategy for precise C2H2 adsorption and activation and guidance for designing multi-functional Ru-based catalysts.

8.
J Air Waste Manag Assoc ; 62(1): 72-86, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22393812

RESUMEN

In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.


Asunto(s)
Contaminación del Aire/prevención & control , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Lógica Difusa , Programas Informáticos , Contaminación del Aire/economía , Algoritmos , Centrales Eléctricas , Factores de Tiempo , Incertidumbre
9.
J Contam Hydrol ; 247: 103985, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286951

RESUMEN

In this study, an inexact fractional programming method is employed for planning the regional-scale water-energy-food nexus (WEFN) system. The IFP cannot only deal with uncertainties expressed as interval parameters, but also handle conflicts among multiple decision stakeholders. The IFP approach is then applied to planning the WEFN system of Henan Province, China. An IFP-WEFN model has been established under consideration of various restrictions related to water and energy availability, as well as food demand. Solutions of the planting areas for different crops in different periods have been generated. The results suggested that there would be a significant increase for vegetable cultivation with an increasing rate of 24.4% and 30% respectively for the conservative and advantageous conditions, followed by the fruit cultivation. In comparison, the planting area of cotton would be decreased with a decreasing rate of 21.2%, and there would also be an explicit decrease for rice cultivation. These results can help generate a desired planting scheme in order to achieve a maximized unit benefit with respect to the water utilization. Comparison between the IFP-WEFN model and the ILP-WEFN model indicates that, even though a slightly lower benefit is obtained from IFP-WENF model, it can result in a higher unit benefit than the planting scheme from ILP-WEFN model. Consequently, the IFP-WEFN model can help decision-makers identify the sustainable agricultural water resources management schemes with a priority of water utilization efficiency.


Asunto(s)
Modelos Teóricos , Agua , China , Incertidumbre , Recursos Hídricos , Abastecimiento de Agua
10.
Sci Total Environ ; 760: 143318, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33223156

RESUMEN

This paper reported when sulfamethazine (SMT) and antimony (Sb(V)) coexisted in aqueous solution at pH of 3.0, 5.0 and 7.0, the complexation between SMT and Sb(V) occurred. Such a complexation impeded the adsorption of Sb(V) on the black soil. The higher the solution pH value was, the more the amount of Sb(V) was prevented from adsorbing on the black soil. The maximum adsorption capacity (qm) of Sb(V) at the presence of SMT under pH of 3.0, 5.0 and 7.0 was 5.28, 3.45 and 1.95 mg/g, respectively. -NH2, NH, SO and CN of pyrimidine ring carried by SMT acted as the complexation sites with Sb(V). The complexation constant K were - 3.15, -3.26 and - 3.48 at pH of 7.0, 5.0 and 3.0, respectively, indicating that the complexation strength between SMT and Sb(V) followed the order of pH 7.0 > pH 5.0 > pH 3.0. The binding energy between Sb(V) and the CN group of pyrimidine ring was the highest (1.42 eV), and then followed by the groups of -NH (1.37 eV), SO (0.66 eV) and -NH2 (0.39 eV). Besides SO and CN, Sb(V) tends to complex with NH via coordination bond at pH of 7.0 while -NH2 via cation-π interaction at pH 3.0 and 5.0. Compared to pH of 5.0, the strength of cation-π interaction at pH of 3.0 weakened according to the molecular electrostatic potential map. These results demonstrated that different from the situation where Sb(V) exists in aqueous solution alone, the coexistence of SMT with Sb(V) affected the adsorption behavior of Sb(V) in soil and solution pH was also an influence factor. These findings in this paper would be helpful for further understanding the mobility, bioavailability and other environmental behavior of Sb(V) in soil when Sb(V) coexists with antibiotics even other organic compounds.

11.
Bioresour Technol ; 245(Pt A): 681-688, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28917103

RESUMEN

Burkholderia sp. ZD1, aerobically utilizes 2-picolinic acid as a source of carbon, nitrogen and energy, was isolated. ZD1 completely degraded 2-picolinic acid when the initial concentrations ranged from 25 to 300mg/L. Specific growth rate (µ) and specific consumption rate (q) increased continually in the concentration range of 25-100mg/L, and then declined. Based on the Haldane model and Andrew's model, µmax and qmax were calculated as 3.9 and 16.5h-1, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the main intermediates in the degradation pathway. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was innovatively used to deduce the ring cleavage mechanism of N-heterocycle of 2-picolinic acid. To our knowledge, this is the first report on not only the utilization of 2-picolinic acid by a Burkholderia sp., but also applying FT-ICR-MS and ATR-FTIR for exploring the biodegradation pathway of organic compounds.


Asunto(s)
Biodegradación Ambiental , Ácidos Picolínicos , Análisis de Fourier , Espectrometría de Masas , Redes y Vías Metabólicas
12.
Sci Total Environ ; 548-549: 198-210, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26802348

RESUMEN

Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary.

13.
Chemosphere ; 89(11): 1347-53, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22739539

RESUMEN

A systematic study has been carried out to get insight into the micellar behavior of Gemini cationic and conventional nonionic in their single as well as equimolar bi and ternary mixed state using the technique of tensiometry. The models proposed by Clint, Rubingh and Motomura et al. have been employed to interpret the formation of mixed micelles and find out synergism. The obtained experimental CMCs are lower than the ideal CMCs, indicating negative deviation from ideal behavior for all multi-component mixed micelles formation. The solubilization capacities of selected equimolar bi and ternary surfactant systems towards polycyclic aromatic hydrocarbons (PAHs), naphthalene and pyrene, have been evaluated from measurements of the molar solubilization ratio (MSR), the micelle-water partition coefficient (K(m)), the deviation ratio (R) and the free energy of solubilization (ΔG(s)(0)) of PAHs. The results show that the solubility of naphthalene and pyrene over that in water in case of Gemini cationic surfactant is dramatically enhanced by adding equimolar nonionic surfactant in both bi and ternary mixed surfactant systems. The studied equimolar ternary surfactant system shows higher solubilizing efficiency than Gemini cationic binary system but lower than their cationic-nonionic counterpart. In addition, the solubilizing power of multi-component mixed surfactants towards naphthalene and pyrene increases with increasing logK(ow) of PAHs. Certainly, the solubilization abilities of the selected surfactants not only depend on their structure and mixing effect but also associate with solubilizing microenvironment and chemical nature of organic solutes.


Asunto(s)
Naftalenos/química , Pirenos/química , Tensoactivos/química , Agua/química , Cationes/química , Compuestos de Amonio Cuaternario/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA