Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Langmuir ; 40(3): 1892-1901, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38192235

RESUMEN

Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.

2.
J Am Chem Soc ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36930579

RESUMEN

Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation in vivo but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots in situ and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.

3.
Immun Ageing ; 20(1): 44, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649035

RESUMEN

BACKGROUND: Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS: We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION: STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.

4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(6): 949-952, 2022 Nov.
Artículo en Zh | MEDLINE | ID: mdl-36443033

RESUMEN

Diabetic chronic wound is one of the most serious complications of diabetes, imposing enormous socioeconomic burdens on diabetic patients, their families, and society due to its refractory nature. MicroRNAs (miRNAs) have emerged as important regulators of various physiological and pathological processes. Abnormalities arise in the regulatory functions of miRNAs in chronic diabetic wounds. Therefore, the modification of miRNAs expression in diabetic wounds is an important channel for the improvement of wound healing. The clinical translation of miRNA-based therapy may become a prospective direction of diabetic wound healing. However, miRNA-based therapy is still in its early stage of development, and actual translation into clinical application will take a long time. Herein, we summarized the latest research findings on miRNAs in diabetic chronic wounds healing.


Asunto(s)
Diabetes Mellitus , MicroARNs , Humanos , MicroARNs/genética , Estudios Prospectivos , Cicatrización de Heridas/genética
5.
Biochem Biophys Res Commun ; 513(2): 515-521, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30979495

RESUMEN

Previous studies showed that Nel-like molecule-1 (Nell-1) can positively regulate odontoblastic differentiation and dentin formation. Intriguingly, our group found that Nell-1 is co-expressed with neural markers. The purpose of this study was to investigate whether Nell-1 protein plays a regulatory role in the differentiation of dental pulp cells into neural-like cells by in vivo and in vitro studies. The expression patterns of Nell-1 and dental pulp neural markers were observed by double immunofluorescence staining in normal dental pulp tissue sections of Wistar rat. Collagen sponge containing Nell-1 protein was added into the pulp cavity of rat molars in order to observe the expression patterns of neural markers in rat dental pulp repair and regeneration model by immunohistochemical staining. Moreover, human dental pulp stem cells (hDPSCs) were cultured, and different concentrations of Nell-1 protein were added for 12 h, 24 h, and 72h. The expression of neural markers was detected by using quantitative real-time polymerase chain reaction and Western blot. Nell-1 was co-expressed with neural markers including substance P (SP) and Nestin in rat dental pulp tissue. The expression of neural markers including SP, neuron-specific enolase (NSE), and Nestin was increased obviously in rat dental pulp tissues stimulated with Nell-1 protein. In cultured hDPSCs induced by Nell-1 protein, the expression of neural markers including glial fibrillary acidic protein (GFAP), Nestin, and ß-III tubulin was increased. Nell-1 plays a positive role in inducing the differentiation of DPSCs into neural-like cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Pulpa Dental/citología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Células Madre/citología , Animales , Proteínas de Unión al Calcio/análisis , Diferenciación Celular , Células Cultivadas , Pulpa Dental/inervación , Pulpa Dental/metabolismo , Humanos , Proteínas del Tejido Nervioso/análisis , Ratas Wistar , Células Madre/metabolismo
6.
Biochem Biophys Res Commun ; 518(2): 246-252, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416616

RESUMEN

Nel-like molecule 1 (Nell-1) is an essential positive regulator of tooth development and odontoblast differentiation. However, its precise mechanism remains undetermined. This study aims to explore the possible receptor or binding protein of Nell-1. Results showed that Nell-1 and Apoptosis related protein 3(APR3) expression levels were high in odontoblasts and inversely correlated. Endogenous Nell-1 co-immunoprecipitated with APR3, and this co-IP was reciprocal. Double immunofluorescence staining revealed that Nell-1 and APR3 colocalized on the nuclear envelope of human dental pulp cells. Nell-1 inhibited the proliferation of these cells co-infected with APR3 through Cyclin D1 downregulation. The interaction of Nell-1 with APR3 stimulated alkaline phosphatase (ALP) activity and promoted the expression and mineralization of DSPP, ALP, OPN, and BSP. The shRNA of APR3 decreased cell differentiation and mineralization. Nell-1 could reciprocally interact with APR3 and stimulate the differentiation and mineralization of human dental pulp cells. Future studies should explore the potential functional connection and the molar mechanism of such interaction.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Pulpa Dental/citología , Odontoblastos/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/metabolismo , Humanos , Proteínas de Transporte de Membrana , Odontoblastos/metabolismo , Odontogénesis , Mapas de Interacción de Proteínas
7.
Blood Cells Mol Dis ; 77: 129-136, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059942

RESUMEN

Autophagy is primarily considered as an important survival mechanism for both normal cells and cancer cells in response to metabolic stress or chemotherapy; but the role of autophagy in leukemogenesis is not fully understood. The aim of this study is to explore the role of intrinsic autophagy in the leukemogenesis of B-cell acute lymphoblastic leukemia (B-ALL). In this study, conditional knockout mice Atg7f/f;Ubc-Cre, in which an autophagy-essential gene Atg7 is universally deleted, were used as recipients, B-ALL cell line 697 was used as donor cells to generate leukemia mouse model. Compared to wild-type mice, Atg7 knockout mice were more susceptible to engrafted leukemogenesis, shown by increase in white blood cells, lymphocytes, and platelets, decrease in HSPC number and its colony-forming unit (CFU). The liver and spleen displayed hepatosplenomegaly and inflammatory cell infiltration. Furthermore, second competitive transplantation revealed dysfunction of the HSPC in Atg7-knockout leukemia mice represented by destructive self-renew ability (CFU) and reconstitution ability including decreased B220, Ter 119 cells, and increased Gr-1 cell percentage. In summary, Mice with universal deletion of Atg7 are more inclined to the occurrence of engrafted human leukemia, which is largely attributed to the deterioration of the function of HSPC in autophagy deficient mice.


Asunto(s)
Autofagia/genética , Transformación Celular Neoplásica/genética , Predisposición Genética a la Enfermedad , Leucemia/genética , Animales , Proteína 7 Relacionada con la Autofagia/deficiencia , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Genotipo , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Noqueados
8.
J Biol Chem ; 290(38): 23050-63, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26245898

RESUMEN

Autophagy is integral to hematopoiesis and protects against leukemogenesis. However, the fundamentals of the required molecular machinery have yet to be fully explored. Using conditional mouse models to create strategic defects in the hematopoietic hierarchy, we have shown that recovery capacities in stem cells and somatic cells differ if autophagy is impaired or flawed. An in vivo Atg7 deletion in hematopoietic stem cells completely ablates the autophagic response, leading to irreversible and ultimately lethal hematopoiesis. However, while no adverse phenotype is manifested in vivo by Atg7-deficient myeloid cells, they maintain active autophagy that is sensitive to brefeldin A, an inhibitor targeting Golgi-derived membranes destined for autophagosome formation in alternative autophagy. Removing Rab9, a key regulatory protein, in alternative autophagy, disables autophagy altogether in Atg7-deficient macrophages. Functional analysis indicates that ATG7-dependent canonical autophagy is physiologically active in both hematopoietic stem cells and in terminally differentiated hematopoietic cells; however, only terminally differentiated cells such as macrophages are rescued by alternative autophagy if canonical autophagy is ineffective. Thus, it appears that hematopoietic stem cells rely solely on ATG7-dependent canonical autophagy, whereas terminally differentiated or somatic cells are capable of alternative autophagy in the event that ATG7-mediated autophagy is dysfunctional. These findings offer new insight into the transformational trajectory of hematopoietic stem cells, which in our view renders the autophagic machinery in stem cells more vulnerable to disruption.


Asunto(s)
Autofagia/fisiología , Diferenciación Celular/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia , Femenino , Eliminación de Gen , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Unión al GTP rab/genética
10.
Haematologica ; 100(3): 345-56, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25512644

RESUMEN

B-cell acute lymphoblastic leukemia is the most common type of pediatric leukemia. Despite improved remission rates, current treatment regimens for pediatric B-cell acute lymphoblastic leukemia are often associated with adverse effects and central nervous system relapse, necessitating more effective and safer agents. Bafilomycin A1 is an inhibitor of vacuolar H(+)-ATPase that is frequently used at high concentration to block late-phase autophagy. Here, we show that bafilomycin A1 at a low concentration (1 nM) effectively and specifically inhibited and killed pediatric B-cell acute lymphoblastic leukemia cells. It targeted both early and late stages of the autophagy pathway by activating mammalian target of rapamycin signaling and by disassociating the Beclin 1-Vps34 complex, as well as by inhibiting the formation of autolysosomes, all of which attenuated functional autophagy. Bafilomycin A1 also targeted mitochondria and induced caspase-independent apoptosis by inducing the translocation of apoptosis-inducing factor from mitochondria to the nucleus. Moreover, bafilomycin A1 induced the binding of Beclin 1 to Bcl-2, which further inhibited autophagy and promoted apoptotic cell death. In primary cells from pediatric patients with B-cell acute lymphoblastic leukemia and a xenograft model, bafilomycin A1 specifically targeted leukemia cells while sparing normal cells. An in vivo mouse toxicity assay confirmed that bafilomycin A1 is safe. Our data thus suggest that bafilomycin A1 is a promising candidate drug for the treatment of pediatric B-cell acute lymphoblastic leukemia.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Macrólidos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/patología , Beclina-1 , Núcleo Celular/efectos de los fármacos , Núcleo Celular/inmunología , Núcleo Celular/patología , Niño , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Cardiovasc Dev Dis ; 11(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057618

RESUMEN

Background: Several studies have shown that sodium-dependent glucose transporter 2 inhibitors can be used in the treatment of heart failure. This article summarized systematic reviews of sodium-dependent glucose transporter 2 inhibitors in the treatment of heart failure in order to evaluate efficacy and safety. Methods: We systematically searched eight electronic databases from inception to July 2023. We used Assessment of Multiple Systematic Reviews 2 to evaluate the methodological quality, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 to assess report quality, Risk of Bias in Systematic Review to assess the risk of bias, and Grading of Recommendations Assessment, Development, and Evaluation to rate the quality of evidence. Outcome: A total of 36 systematic reviews were included. Our results were classified as clear evidence of benefit: hospitalization for heart failure; possible benefit: cardiovascular death (mortality) and renal outcome composite; clear evidence of no effect or equivalence: atrial arrhythmias, ventricular arrhythmia, atrial fibrillation, and hypotension; possible harm: genital infection; insufficient evidence to draw a conclusion: atrial flutter, major adverse cardiovascular events, urinary tract infection, acute kidney injury, hypoglycemia, and bone fracture. Conclusions: Sodium-dependent glucose transporter 2 inhibitors are beneficial for the treatment of heart failure, especially in terms of heart failure hospitalization.

12.
Int J Pharm ; 649: 123638, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008233

RESUMEN

The characteristics of biofilms have exacerbated the issue of clinical antibiotic resistance, rendering it a pressing challenge in need of resolution. The combination of biofilm-dispersing agents and antibiotics can eliminate biofilms and promote healing synergistically in infected wounds. In this study, we developed a novel nanocomposite hydrogel (NC gel) comprised of the poly(lactic acid)-hyperbranched polyglycerol (PLA-HPG) based bioadhesive nanoparticles (BNPs) and a hydrophilic carboxymethyl chitosan (CS) network. The NC gel was designed to co-deliver two biofilm-dispersing agents (an NO-donor SNO, and an α-amylase Am) and an antibiotic, cefepime (Cef), utilizing a synergistic anti-biofilm mechanism in which Am loosens the matrix structure and NO promotes the release of biofilm bacteria via quorum sensing, and Cef kills bacteria. The drug-loaded NC gel (SNO/BNP/CS@Am-Cef) demonstrated sustained drug release, minimal cytotoxicity, and increased drug-bacterial interactions at the site of infection. When applied to mice infected with methicillin-resistant Staphylococcus aureus (MRSA) biofilms in vivo, SNO/BNP/CS@Am-Cef enhanced biofilm elimination and promoted wound healing compared to traditional antibiotic treatments. Our work demonstrates the feasibility of the co-delivery of biofilm-dispersing agents and antibiotics using the NC gel and presents a promising approach for the polytherapy of bacterial biofilm-related infections.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Nanogeles , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas , Hidrogeles/química , Pruebas de Sensibilidad Microbiana
13.
Clin Nutr ; 43(2): 453-467, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38181523

RESUMEN

BACKGROUND & AIMS: Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS: The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS: Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS: The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.


Asunto(s)
Dieta , Ayuno , Ratones , Humanos , Animales , Hígado/metabolismo , Metabolismo de los Lípidos , Mamíferos
14.
Zhongguo Fei Ai Za Zhi ; 26(10): 765-773, 2023 Oct 20.
Artículo en Zh | MEDLINE | ID: mdl-37989339

RESUMEN

Lung cancer is one of the most common cancers in the world, and its treatment strategy is mainly surgery combined with radiotherapy and chemotherapy. However, long-term chemotherapy will result in drug resistance, which is also one of the difficulties in the treatment of lung cancer. Ferroptosis is an iron-dependent and lipid peroxidation-driven non-apoptotic cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (Nrf2) is key for cellular antioxidant responses. Numerous studies suggest that Nrf2 assumes an extremely important role in regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. In this review, a brief overview of the research progress of ferroptosis over the past decade will be presented. In particular, the mechanism of ferroptosis and the regulation of ferroptosis by Nrf2 will be discussed, as well as the role of the Nrf2 pathway and ferroptosis in tumor drug resistance, which will provide new research directions for the treatment of drug-resistant lung cancer patients.
.


Asunto(s)
Ferroptosis , Neoplasias Pulmonares , Humanos , Factor 2 Relacionado con NF-E2/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Resistencia a Antineoplásicos , Hierro
15.
Cancer Med ; 12(5): 5688-5702, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36305267

RESUMEN

BACKGROUND: Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS: We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS: We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS: Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Neoplasias Pulmonares/patología , Pulmón/patología
16.
Sci Total Environ ; 899: 165635, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474074

RESUMEN

The aquaculture area in China's coastal waters has increased rapidly from 6000 km2 in 1990 to 22,000 km2 in 2020. Despite extensive research regarding the effect of coastal aquaculture on water and sediment pollution, evaluating the quantitative relationship between aquaculture and pollutants remains challenging. Sansha Bay, the world's largest cage aquaculture base for Pseudosciaena crocea, is a typical enclosed bay used for investigating aquaculture pollution. A cage culture database is established from 2000 to 2020 in Sansha Bay. Meanwhile, 236 sediment samples from 3 sediment cores and 67 water samples from 4 transects are obtained from the bay for experiments. The main indicators are five nutrients (NO3-, SiO32-, PO43-, NH4+, and NO2-) in the water samples, the grain size, the heavy metal (Zn, Cu, Pb, Cr, Cd, and As) content, and the 210Pb radioactivity in sediment samples. Based on data obtained and a new calculation method, the annual increment in Zn, Cu, As, Cd, Pb, and Cr contents in the cultured zone is shown to increase by 2137 %, 1881 %, 506 %, 300 %, 202 %, and 118 % in 2000-2018, respectively, as compared with the levels in a noncultured zone. The activities of the cage culture increased NO3- by 9 %, PO43- by 30 %, NH4+ by 115 %, and NO2- by 232 %, compared with natural conservative mixing processes, such as the mixing of SiO32-, in 2020. A novel quantitative approach with broad applicability is proposed to evaluate the magnitude of anthropogenically induced environmental contamination. The effectiveness of the proposed technique is demonstrated through a case study conducted in Sansha Bay, China.

17.
Aging Cell ; 22(8): e13889, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37226323

RESUMEN

The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as "nonhematopoietic" sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Ratones , Animales , Células Endoteliales , Nicho de Células Madre/fisiología , Células Madre Hematopoyéticas , Células de la Médula Ósea , Hematopoyesis/fisiología
18.
Zhongguo Fei Ai Za Zhi ; 25(10): 735-741, 2022 Oct 20.
Artículo en Zh | MEDLINE | ID: mdl-36167459

RESUMEN

The morbidity and mortality of lung cancer ranks among the top cancers in the world. Non-small cell lung cancer (NSCLC) is the main pathological type of lung cancer, with limited treatment options and poor prognosis. The nuclear factor E2-related factor 2 (NRF2) signaling pathway is highly mutated and activated in NSCLC, and promotes the malignant progression of lung cancer through various mechanisms. NRF2-targeted therapy will provide new treatment strategies for patients with NSCLC. This article will review the basic structure and response pathways of the NRF2 pathway, the mechanism of NRF2 regulating lung cancer cell proliferation, and the research and development progress of NRF2 inhibitors.
.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pulmonares/patología , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Proliferación Celular
20.
Front Physiol ; 12: 703593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512380

RESUMEN

INTRODUCTION: This work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo. METHODS: Immunofluorescence was conducted to ascertain the location of Nell-1 on DPSCs, HUVECs, and normal rat dental tissues. RT-PCR, Western blot, and ELISA were performed to observe the expression levels of angiogenic markers and determine the angiogenic differentiation of Nell-1 on DPSCs alone or co-cultured with HUVECs, as well as in vitro tube formation assay. Blood vessel number for all groups was observed and compared using immunohistochemistry by establishing a rat pulp exposure model. RESULTS: Nell-1 is highly expressed in the nucleus of DPSCs and HUVECs and is co-expressed with angiogenic markers in normal rat pulp tissues. Hence, Nell-1 can promote the angiogenic marker expression in DPSCs alone and co-cultured with other cells and can enhance angiogenesis in vitro as well as in the pulp exposure model. CONCLUSION: Nell-1 may play a positive role in the angiogenic differentiation of DPSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA