Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Infect Dis ; 24(1): 177, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336665

RESUMEN

BACKGROUND: Human polyomaviruses contribute to human oncogenesis through persistent infections, but currently there is no effective preventive measure against the malignancies caused by this virus. Therefore, the development of a safe and effective vaccine against HPyV is of high priority. METHODS: First, the proteomes of 2 polyomavirus species (HPyV6 and HPyV7) were downloaded from the NCBI database for the selection of the target proteins. The epitope identification process focused on selecting proteins that were crucial, associated with virulence, present on the surface, antigenic, non-toxic, and non-homologous with the human proteome. Then, the immunoinformatic methods were used to identify cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and B-cell epitopes from the target antigens, which could be used to create epitope-based vaccine. The physicochemical features of the designed vaccine were predicted through various online servers. The binding pattern and stability between the vaccine candidate and Toll-like receptors were analyzed through molecular docking and molecular dynamics (MD) simulation, while the immunogenicity of the designed vaccines was assessed using immune simulation. RESULTS: Online tools were utilized to forecast the most optimal epitope from the immunogenic targets, including LTAg, VP1, and VP1 antigens of HPyV6 and HPyV7. A multi-epitope vaccine was developed by combining 10 CTL, 7 HTL, and 6 LBL epitopes with suitable linkers and adjuvant. The vaccine displayed 98.35% of the world's population coverage. The 3D model of the vaccine structure revealed that the majority of residues (87.7%) were located in favored regions of the Ramachandran plot. The evaluation of molecular docking and MD simulation revealed that the constructed vaccine exhibits a strong binding (-1414.0 kcal/mol) towards the host's TLR4. Moreover, the vaccine-TLR complexes remained stable throughout the dynamic conditions present in the natural environment. The immune simulation results demonstrated that the vaccine design had the capacity to elicit robust immune responses in the host. CONCLUSION: The multi-parametric analysis revealed that the designed vaccine is capable of inducing sustained immunity against the selected polyomaviruses, although further in-vivo investigations are needed to verify its effectiveness.


Asunto(s)
Poliomavirus , Vacunas , Humanos , Simulación del Acoplamiento Molecular , Vacunología , Epítopos de Linfocito T , Poliomavirus/genética , Biología Computacional/métodos
2.
Arch Microbiol ; 205(4): 109, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36884153

RESUMEN

The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Humanos , Vancomicina/farmacología , Dióxido de Silicio/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas , Bacterias , Biopelículas
3.
J Mol Struct ; 1272: 134160, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36128074

RESUMEN

The CD147 / Cyp A interaction is a critical pathway in cancer types and an essential factor in entering the COVID-19 virus into the host cell. Melittin acts as an inhibitory peptide in cancer types by blocking the CD147/ Cyp A interaction. The clinical application of Melittin is limited due to weak penetration into cancer cells. TAT is an arginine-rich peptide with high penetration ability into cells widely used in drug delivery systems. This study aimed to design a hybrid peptide derived from Melittin and TAT to inhibit CD147 /Cyp A interaction. An amino acid region with high anti-cancer activity in Melittin was selected based on the physicochemical properties. Based on the results, a truncated Melittin peptide with 15 amino acids by the GGGS linker was fused to a TAT peptide (nine amino acids) to increase the penetration rate into the cell. A new hybrid peptide analog(TM) was selected by replacing the glycine with serine based on random point mutation. Docking results indicated that the TM peptide acts as an inhibitory peptide with high binding energy when interacting with CD147 and the CypA proteins. RMSD and RMSF results confirmed the high stability of the TM peptide in interaction with CD147. Also, the coarse-grained simulation showed the penetration potential of TM peptide into the DOPS-DOPC model membrane. Our findings indicated that the designed multifunctional peptide could be an attractive therapeutic candidate to halter tumor types and COVID-19 infection.

4.
Mol Biol Rep ; 49(10): 10013-10022, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35727475

RESUMEN

BACKGROUND/AIM: The gradual accumulation of genetic and epigenetic alterations can lead to the development of colorectal cancer. In the last decade much research has been done to discover how methylation as an epigenetic alteration leads to carcinogenesis. While Methylation is a biological process, it can influence gene expression by affecting the promoter activity. This article reviews the role of methylation in critical pathways in CRC. METHODS: In this study using appropriate keywords, all research and review articles related to the role of methylation on different cancers were collected and analyzed. Also, existing information on methylation detection methods and therapeutic sensitivity or resistance due to DNA methylation were reviewed. RESULTS: The results of this survey revealed that while Methylation is a biological process, it can influence gene expression by affecting the promoter activity. Promoter methylation is associated with up or downregulation of genes involved in critical pathways, including cell cycle, DNA repair, and cell adherence. Hence promoter methylation can be used as a molecular tool for early diagnosis, improving treatment, and predicting treatment resistance. CONCLUSION: Current knowledge on potential methylation biomarkers for diagnosis and prognoses of CRC has also been discussed. Our survey proposes that a multi-biomarker panel is more efficient than a single biomarker in the early diagnosis of CRC.


Asunto(s)
Neoplasias Colorrectales , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Metilación de ADN/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos
5.
BMC Infect Dis ; 21(1): 300, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761869

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is the leading cause of nosocomial infections, especially in people with a compromised immune system. Targeting virulence factors by neutralizing antibodies is a novel paradigm for the treatment of antibiotic-resistant pseudomonas infections. In this respect, exotoxin A is one of the most potent virulence factors in P. aeruginosa. The present study was carried out to identify a novel human scFv antibody against the P. aeruginosa exotoxin A domain I (ExoA-DI) from a human scFv phage library. METHODS: The recombinant ExoA-DI of P. aeruginosa was expressed in E. coli, purified by Ni-NTA column, and used for screening of human antibody phage library. A novel screening procedure was conducted to prevent the elimination of rare specific clones. The phage clone with high reactivity was evaluated by ELISA and western blot. RESULTS: Based on the results of polyclonal phage ELISA, the fifth round of biopanning leads to the isolation of several ExoA-DI reactive clones. One positive clone with high affinity was selected by monoclonal phage ELISA and used for antibody expression. The purified scFv showed high reactivity with the recombinant domain I and full-length native exotoxin A. CONCLUSIONS: The purified anti-exotoxin A scFv displayed high specificity against exotoxin A. The human scFv identified in this study could be the groundwork for developing a novel therapeutic agent to control P. aeruginosa infections.


Asunto(s)
ADP Ribosa Transferasas/inmunología , Toxinas Bacterianas/inmunología , Exotoxinas/inmunología , Pseudomonas aeruginosa/inmunología , Anticuerpos de Cadena Única/inmunología , Factores de Virulencia/inmunología , ADP Ribosa Transferasas/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Especificidad de Anticuerpos , Toxinas Bacterianas/genética , Escherichia coli/genética , Exotoxinas/genética , Humanos , Biblioteca de Péptidos , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Factores de Virulencia/genética , Exotoxina A de Pseudomonas aeruginosa
6.
Phytother Res ; 35(11): 6216-6227, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34496087

RESUMEN

This study aimed to investigate the effect of nanomicelle curcumin (CUR), Nigella sativa oil (NS), and CUR and NS on the plasma levels of miR-21, miR-422a, and miR-503 expression in postmenopausal women with low bone mass density (BMD). This randomized, triple-blind, placebo-controlled clinical trial with a factorial design was conducted on 120 postmenopausal women from the integrated healthcare system, Tabriz-Iran. The BMD was determined using dual-energy X-ray absorptiometry (DEXA). Women were randomly divided into four groups of 30 participants: (a) CUR (80 mg) and placebo of NS, (b) NS (1,000 mg) and placebo of CUR, (c) CUR (80 mg) and NS (1,000 mg), and (d) both placebos (containing microcrystalline cellulose). The plasma level of miRNA-21, miRNA-422a, and miRNA-503 was determined by qRT-PCR. The expression level of miRNAs at the baseline was similar. At the end of the intervention, only the expression level of miRNA-21 changed statistically significantly between the four groups (p = .037) and between the NS and placebo groups (p = .005). Also, its expression in the two groups receiving NS (p = .037) and NS-CUR (p = .043) was significantly increased. NS and NS-CUR supplementation can increase the expression level of miRNA-21 in postmenopausal women with low bone density, and bring perspective to further studies of the target.


Asunto(s)
Enfermedades Óseas Metabólicas , Curcumina , MicroARNs , Nigella sativa , Densidad Ósea , Curcumina/farmacología , Suplementos Dietéticos , Método Doble Ciego , Humanos , MicroARNs/genética , Aceites de Plantas , Posmenopausia
7.
J Wound Care ; 30(2): 135-141, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33573489

RESUMEN

OBJECTIVE: The aim of this study was to investigate the molecular epidemiology and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from patients with burns in Azerbaijan, Iran. METHOD: Pseudomonas aeruginosa was isolated from 38 patients with burns. Disk diffusion and agar dilution methods were used to determine antibiotic susceptibility patterns. The overproduction of AmpC ß-lactamase and efflux pumps were detected by phenotypic methods. The presence of carbapenemase-encoding genes was detected by multiplex polymerase chain reaction (PCR). Expression of the OprD gene and MexAB efflux pumps were also evaluated with real-time PCR. Random amplified polymorphic DNA typing (RAPD-PCR) was used for genotyping of carbapenem-resistant Pseudomonas aeruginosa (CRPA). RESULTS: Minimum inhibitory concentration (MIC) assays demonstrated high levels of resistance to all classes of antibiotics except colistin and polymyxin B. The initial screening by carbapenem disks indicated 24 isolates (63.15%) as CRPA. Different mechanisms of carbapenem resistance were observed, including carbapenemase production (8.4%), overexpression of AmpC (25%) and decreased expression of OprD (75%). The overexpression of MexAB efflux pumps was detected in 19 (79.1%) isolates by phenotypic assay or real-time PCR. The resistance to carbapenem was multifactorial in most cases (58.3%). The RAPD genotyping revealed different patterns with nine clusters. CONCLUSION: According to our results, the prevalence of CRPA is at an alarming level. Our results did not demonstrate an epidemic clone. The most common mechanism of carbapenem resistance was decreased expression of OprD. Therefore, we suggest a reconsideration in the management of CRPA infections of patients in our burn care hospital in Azerbaijan, Iran.


Asunto(s)
Quemaduras , Infecciones por Pseudomonas/epidemiología , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Quemaduras/microbiología , Carbapenémicos/farmacología , Humanos , Irán/epidemiología , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/aislamiento & purificación , Técnica del ADN Polimorfo Amplificado Aleatorio , beta-Lactamasas/genética
8.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205739

RESUMEN

The incidence of various types of cancer is increasing globally. To reduce the critical side effects of cancer chemotherapy, naturally derived compounds have been considered for cancer treatment. Gymnosperms are a group of plants found worldwide that have traditionally been used for therapeutic applications. Paclitaxel is a commercially available anticancer drug derived from gymnosperms. Other natural compounds with anticancer activities, such as pinostrobin and pinocembrin, are extracted from pine heartwood, and pycnogenol and enzogenol from pine bark. Gymnosperms have great potential for further study for the discovery of new anticancer compounds. This review aims to provide a rational understanding and the latest developments in potential anticancer compounds derived from gymnosperms.


Asunto(s)
Antineoplásicos Fitogénicos , Cycadopsida/química , Neoplasias/tratamiento farmacológico , Humanos
9.
Biol Proced Online ; 22(1): 25, 2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33308171

RESUMEN

BACKGROUND: Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. RESULTS: The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. CONCLUSIONS: The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.

10.
Microb Pathog ; 149: 104344, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32534182

RESUMEN

Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacterial species in the colon of healthy human adults and representing more than 5% of the total bacterial population. Recently, it has been known as a major actor in human intestinal health and a biosensor. Changes in this species population richness and quantity have been observed in many illnesses and several investigations have reported that abundance of F. prausnitzii is reduced in different intestinal disorders. In the current review, we aim to consider literature from various library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly collected and serve as an overview of different features of F. prausnitzii including metabolites, anti-inflammatory action, and correlation of dysbiosis of this bacterium with various complications in human.


Asunto(s)
Disbiosis , Faecalibacterium prausnitzii , Adulto , Colon , Humanos
11.
Crit Rev Biotechnol ; 40(2): 119-137, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31793351

RESUMEN

Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.


Asunto(s)
Bacterias/inmunología , Bacteriófagos/fisiología , Evolución Biológica , Interacciones Huésped-Patógeno , Bacterias/virología , Sistemas CRISPR-Cas
12.
Eur J Clin Microbiol Infect Dis ; 39(4): 613-627, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31828683

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the well-known disease of the liver in adults and children throughout the world. The main manifestations related to NAFLD are an unusual storage of lipid in hepatocytes (hepatic steatosis) and progression of inflammation for non-alcoholic steatohepatitis (NASH). NAFLD is described as a multifactorial complication due to the genetic predisposition, metabolic functions, inflammatory, gut microbiota (GM), and environmental factors. The GM dysregulation among these factors is correlated to NAFLD development. In recent decades, advanced microbial profiling methods are continuing to shed light on the nature of the changes in the GM caused by NASH and NAFLD. In the current review, we aim to perform a literature review in different library databases and electronic searches (Science Direct, PubMed, and Google Scholar) which were randomly obtained. This will be done in order to provide an overview of the relation between GM and NAFLD, and the role of prebiotics, probiotics, and fecal microbiota transplantation (FMT), as potential therapeutic challenges for NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Progresión de la Enfermedad , Disbiosis/complicaciones , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Humanos , Inflamación , Ratones , Enfermedad del Hígado Graso no Alcohólico/microbiología , Prebióticos , Probióticos/uso terapéutico
13.
Biol Res ; 53(1): 52, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187557

RESUMEN

BACKGROUND: Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell in the commercial-scale production of biopharmaceutical proteins. Modification of genes involved in apoptosis may improve the productivity of CHO cells. Executive caspases, including caspases 3 and 7, play critical roles in apoptosis. The effects of the ablation of the caspase 7 gene on proliferation and viability of CHO cells remains unknown. In this study, we applied clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) to target caspase 7 gene of CHO K1 cell via all in one and homology targeted integration strategies. Consequently, the effect of caspase 7 deficiency on cell proliferation, viability, and apoptosis was studied by MTT assay and flow cytometry. RESULTS: Findings of gel electrophoresis, western blotting, and sequencing confirmed the caspase 7 gene silencing in CHO cells (CHO-KO). Proliferation assay revealed that caspase 7 deficiency in CHO cells resulted in the reduction of proliferation in various CHO-KO clones. Besides, the disruption of caspase 7 had negative effects on cell viability in exposure with NaBu which confirmed by MTT assay. Results of flow cytometry using Anexin V/PI demonstrated that Nabu treatment (11 mM) declined the percentage of live CHO-K1 and CHO-KO cells to 70.3% and 5.79%. These results verified that the CHO-K1 cells were more resistant to apoptosis than CHO-KO, however most of CHO-KO cells undergone early apoptosis (91.9%) which seems to be a fascinating finding. CONCLUSION: These results reveal that caspase 7 may be involved in the cell cycle progression of CHO cells. Furthermore, it seems that targeting caspase 7 is not the ideal route as it had previously been imagined within the prevention of apoptosis but the relation between caspase 7 deficiency, cell cycle arrest, and the occurrence of early apoptosis will require more investigation.


Asunto(s)
Apoptosis , Caspasa 7/deficiencia , Proliferación Celular , Supervivencia Celular , Animales , Células CHO , Caspasa 7/genética , Cricetinae , Cricetulus
14.
J Cell Physiol ; 234(2): 1560-1566, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30132854

RESUMEN

Lung cancer is a leading cause of cancer-related deaths worldwide, with less than a 5-year survival rate for both men and women. Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma oncogene (KRAS) signaling pathways play a critical role in the proliferation and progression of various cancers, including lung cancer. Genetic studies have shown that amplification, over-expression, or mutation of EGFR is an early and major molecular event in many human tumors. KRAS mutation is a negative factor in various cancer, including non-small-cell lung cancer, and complicates therapeutic approaches with adjuvant chemotherapy and anti-EGFR directed therapies. This article is dedicated to evaluating the synergistic effect of a novel EGFR inhibitor AZD8931 and KRAS small interfering RNA (siRNA) on the proliferation and apoptosis of lung adenocarcinoma cancer cells. A549 lung cancer cells were treated with KRAS siRNA and the EGFR inhibitor alone or in combination. The cytotoxic effects of KRAS siRNA and te EGFR inhibitor were determined usingMTT assay, and induction of apoptosis was determined by FACS analysis. Suppression of KRAS, Her-2, and EGFR expression by treatments was measured by qRT-PCR and western blotting. KRAS siRNA and the EGFR inhibitor significantly reduced the proliferation of A549 cells as well as KRAS and EGFR mRNA levels 24 hr after treatment. The results also indicated that the silencing of KRAS and EGFR has synergistic effects on the induction of apoptosis on the A549 cells. These results indicated that KRAS and EGFR might play important roles in the progression of lung cancer and could be potential therapeutic targets for treatment of lung cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinazolinas/farmacología , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia , Células A549 , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
15.
J Cell Biochem ; 120(10): 16379-16392, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31219653

RESUMEN

Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Humanos
16.
J Cell Biochem ; 120(6): 10670-10677, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30656741

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer-related death with less than 5-year survival rate for both men and women worldwide. KRAS (Kirsten rat sarcoma), nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways have a critical role in the proliferation and progression of various cancers, including lung cancer. The p38 MAPK plays a different role in various tissue hence show a tissue-dependent behavior. It acts as an oncogene in some tissues while plays as a tumor suppressor in some other tissues. Also, KRAS and NF-κB act as an oncogene in various cancer. This study was dedicated to analyzing the combined effect of NF-κB inhibitor, specific KRAS, and p38α small interfering RNA (siRNA) in A549 cell line. MATERIALS AND METHODS: The cytotoxic effects of p38α siRNA, KRAS siRNA, and NF-κB inhibitor were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay. Relative p38α, KRAS, and NF-κB messenger RNA (mRNA) levels were measured by quantitative reverse-transcription polymerase chain reaction. Induction of apoptosis by treatments was measured by fluorescence-activated cell sorting (FACS) analysis. RESULTS: The expression of mRNA related to p38α and KRAS genes was reduced to 23.4% and 26.7%, respectively, after treatment with specific siRNAs. Also, MTT assay showed that the cell viability after treatment with p38α siRNA, KRAS siRNA, NF-κB inhibitor and their combination was reduced. FACS results indicated that p38α siRNA, KRAS siRNA, and NF-κB inhibitor, and their combination, reduced the population of live cells in comparison with the population of untreated control cells (99.5%). The results are expressed as mean ± SD (n = 3); *P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001 vs control group. CONCLUSION: The results of this study indicated that p38α, KRAS, and NF-κB signaling pathways might play an important role in the development and growth of lung cancer and might be a potential therapeutic target for treatment of lung cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Quinasa 14 Activada por Mitógenos/genética , FN-kappa B/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Compuestos de Sulfhidrilo/farmacología , Células A549 , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida/métodos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Oxazinas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Piridinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
17.
Appl Microbiol Biotechnol ; 103(20): 8301-8314, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31414162

RESUMEN

Escalating antibiotic resistance is now a serious menace to global public health. It may be led to the emergence of "postantibiotic age" in which most of infections are untreatable. At present, there is an essential need to explore novel therapeutic strategies as a strong and sustainable pipeline to combat antibiotic-resistant infections. This review focuses on recent advances in this area including therapeutic antibodies, antimicrobial peptides, vaccines, gene therapy, genome editing, and phage therapy for tackling drug-resistant infections.


Asunto(s)
Bacterias/efectos de los fármacos , Infecciones Bacterianas/terapia , Terapia Biológica/métodos , Farmacorresistencia Bacteriana Múltiple , Terapia Molecular Dirigida/métodos , Humanos
18.
Molecules ; 24(17)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484421

RESUMEN

Pinus eldarica (Pinaceae), an evergreen plant, is distributed across the warm and dry climates of western Asia, including Asia Minor, the Middle East, and land surrounding the Caspian Sea. Essential oils (EOs) from different aerial parts of this tree have been used in traditional medicine. We aimed to investigate the chemical profile and antimicrobial activity of the EO from P. eldarica grown in northwestern Iran. EO from the needles, bark, and pollen were extracted with boiling water using a Clevenger apparatus at yield of 0.7-1.2 cm3/100 g of dry plant material. The main chemical components of the EO from the needles were D-germacrene (18.17%), caryophyllene (15.42%), γ-terpinene (12.96%), and ß-pinene (10.62%); those from the bark were limonene (16.99%), caryophyllene oxide (13.22%), and drimenol (13.2%); and those from the pollen were α-pinene (25.64%) and limonene (19.94%). In total, 83 constituents were characterized in the EOs, using gas chromatography mass spectrometry analysis; mainly, sesquiterpene hydrocarbons in needle EO and monoterpene hydrocarbons in pollen and bark EOs. ß-Pinene, ß-myrcene, limonene, and caryophyllene were identified in the EOs from all three plant parts. The antibacterial and antifungal properties of the EOs were examined: pollen EO exhibited antibacterial activity against Escherichia coli; bark EO inhibited the growth of Candida albicans and Staphylococcus aureus; and the needle EO inhibited the growth of S. aureus. Thus, the EOs from aerial parts of P. eldarica can benefit the EO industry and antibiotic development.


Asunto(s)
Aceites Volátiles/química , Pinus/química , Componentes Aéreos de las Plantas/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacología , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/farmacología , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Irán , Limoneno/química , Limoneno/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
19.
Cancer Invest ; 36(1): 37-58, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29336624

RESUMEN

Lung cancer is the leading cause of cancer-related mortality with about 1.6 million deaths every year worldwide. Gene mutations and overexpression of oncogenes play a central role in malignant transformation in NSCLC. Conventional approaches for treatments of NSCLC have shown low levels of success while showing severe side effects. Target therapy using siRNA has recently emerged as a new strategy for cancer treatment by specific targeting of genes involved in the development and metastasis of cancer. This article dedicated to an update review of molecular targets could potentially be used for target therapy of lung cancer using SiRNA technology.


Asunto(s)
Neoplasias Pulmonares/genética , ARN Interferente Pequeño/genética , Animales , Humanos , Terapia Molecular Dirigida/métodos , Mutación/genética , Metástasis de la Neoplasia/genética
20.
Immunopharmacol Immunotoxicol ; 40(3): 201-211, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29473438

RESUMEN

INTRODUCTION: Rheumatoid arthritis (RA), as one of the most disabling autoimmune diseases, is a common health problem that progressively reduces the life quality of patients. Although various biologics have been introduced for RA, attempts to establish an efficient long-term therapies failed due to the heterogeneity of this disease. METHODS: In the last decade, immunomodulatory approaches such as T cell adoptive therapy have been developed for controlling autoimmunity. Regulatory T cells (Tregs), the major self-tolerance mediator, are crucial for down-regulation of aberrant immune stimulations. Hence, recruiting ex vivo Tregs emerged as a promising therapy for a variety of autoimmune diseases. RESULTS: The major bottleneck of the Treg adoptive therapy is maintaining the in vivo stability and plasticity of these fascinating cells. Recent progress in genome editing technology clustered regularly interspaced short palindromic repeats (CRISPR) in combination with CRISPR-associated (Cas) 9 system provided a new solution for this bottleneck. CONCLUSIONS: The present paper discusses RA pathogenesis and the potential application of new developments in CRISPR-mediated Treg genome editing in personalized therapy of RA.


Asunto(s)
Artritis Reumatoide , Sistemas CRISPR-Cas , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Linfocitos T Reguladores/inmunología , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA