Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Toxicol Environ Health A ; 87(8): 325-341, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38314584

RESUMEN

During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m3, 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity.


Asunto(s)
Exposición por Inhalación , Pulmón , Cemento de Policarboxilato , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar
2.
Int J Toxicol ; 41(4): 312-328, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35586871

RESUMEN

This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 µg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.


Asunto(s)
Acrilonitrilo , Contaminación del Aire Interior , Acrilonitrilo/toxicidad , Contaminación del Aire Interior/análisis , Butadienos/toxicidad , Células Epiteliales , Humanos , Tamaño de la Partícula , Material Particulado , Impresión Tridimensional , Estireno/análisis , Estireno/toxicidad
3.
Inhal Toxicol ; 32(11-12): 403-418, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33076715

RESUMEN

BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.


Asunto(s)
Resinas Acrílicas/toxicidad , Contaminación del Aire Interior/efectos adversos , Butadienos/toxicidad , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Poliestirenos/toxicidad , Impresión Tridimensional , Sistema Respiratorio/efectos de los fármacos , Compuestos Orgánicos Volátiles/toxicidad , Resinas Acrílicas/farmacocinética , Aerosoles , Contaminación del Aire Interior/análisis , Animales , Biomarcadores/metabolismo , Recuento de Células Sanguíneas , Líquido del Lavado Bronquioalveolar/química , Butadienos/farmacocinética , Citocinas/sangre , Masculino , Microscopía Electrónica de Rastreo , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/farmacocinética , Poliestirenos/farmacocinética , Ratas Sprague-Dawley , Sistema Respiratorio/metabolismo , Sistema Respiratorio/ultraestructura , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/farmacocinética
4.
Int J Mol Sci ; 20(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888290

RESUMEN

Laser printer-emitted nanoparticles (PEPs) generated from toners during printing represent one of the most common types of life cycle released particulate matter from nano-enabled products. Toxicological assessment of PEPs is therefore important for occupational and consumer health protection. Our group recently reported exposure to PEPs induces adverse cardiovascular responses including hypertension and arrythmia via monitoring left ventricular pressure and electrocardiogram in rats. This study employed genome-wide mRNA and miRNA profiling in rat lung and blood integrated with metabolomics and lipidomics profiling in rat serum to identify biomarkers for assessing PEPs-induced disease risks. Whole-body inhalation of PEPs perturbed transcriptional activities associated with cardiovascular dysfunction, metabolic syndrome, and neural disorders at every observed time point in both rat lung and blood during the 21 days of exposure. Furthermore, the systematic analysis revealed PEPs-induced transcriptomic changes linking to other disease risks in rats, including diabetes, congenital defects, auto-recessive disorders, physical deformation, and carcinogenesis. The results were also confirmed with global metabolomics profiling in rat serum. Among the validated metabolites and lipids, linoleic acid, arachidonic acid, docosahexanoic acid, and histidine showed significant variation in PEPs-exposed rat serum. Overall, the identified PEPs-induced dysregulated genes, molecular pathways and functions, and miRNA-mediated transcriptional activities provide important insights into the disease mechanisms. The discovered important mRNAs, miRNAs, lipids and metabolites may serve as candidate biomarkers for future occupational and medical surveillance studies. To the best of our knowledge, this is the first study systematically integrating in vivo, transcriptomics, metabolomics, and lipidomics to assess PEPs inhalation exposure-induced disease risks using a rat model.


Asunto(s)
Enfermedad/genética , Exposición por Inhalación/efectos adversos , Lipidómica , Pulmón/metabolismo , Nanopartículas/efectos adversos , Suero/metabolismo , Transcriptoma/genética , Contaminantes Atmosféricos/análisis , Animales , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Impresión , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Factores de Riesgo
5.
Biomacromolecules ; 17(11): 3464-3473, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27709894

RESUMEN

A significant amount of research toward commercial development of cellulose based nanomaterials (CNM) is now in progress with some potential applications. Using human A549 and THP-1 cells, we evaluated the biological responses of various CNMs, made out of similar material but with functional and morphological variations. While A549 cells displayed minimal or no cytotoxic responses following exposure to CNMs, THP-1 cells were more susceptible to cytotoxicity, cellular damage and inflammatory responses. Further analysis of these biological responses evaluated using hierarchical clustering approaches was effective in discriminating (dis)-similarities of various CNMs studied and identified potential inflammatory factors contributing to cytotoxicity. No correlation between cytotoxicity and surface properties of CNMs was found. This study clearly highlights that, in addition to the source and characteristics of CNMs, cell type-specific differences in the recognition/uptake of CNMs along with their inherent capability to respond to external stimuli are crucial for assessing the toxicity of CNMs.


Asunto(s)
Celulosa/química , Lignina/química , Nanoestructuras/química , Células A549 , Celulosa/efectos adversos , Celulosa/farmacología , Humanos , Lignina/efectos adversos , Lignina/farmacología , Nanoestructuras/efectos adversos
6.
Part Fibre Toxicol ; 13(1): 28, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27278671

RESUMEN

BACKGROUND: Cellulose-based materials have been used for centuries to manufacture different goods derived from forestry and agricultural sources. In the growing field of nanocellulose applications, its uniquely engineered properties are instrumental for inventive products coming to competitive markets. Due to their high aspect ratio and stiffness, it is speculated that cellulose nanocrystals (CNC) may cause similar pulmonary toxicity as carbon nanotubes and asbestos, thus posing a potential negative impact on public health and the environment. METHODS: The present study was undertaken to investigate the pulmonary outcomes induced by repeated exposure to respirable CNC. C57BL/6 female and male mice were exposed by pharyngeal aspiration to CNC (40 µg/mouse) 2 times a week for 3 weeks. Several biochemical endpoints and pathophysiological outcomes along with gene expression changes were evaluated and compared in the lungs of male and female mice. RESULTS: Exposure to respirable CNC caused pulmonary inflammation and damage, induced oxidative stress, elevated TGF-ß and collagen levels in lung, and impaired pulmonary functions. Notably, these effects were markedly more pronounced in females compared to male mice. Moreover, sex differences in responses to pulmonary exposure to CNC were also detected at the level of global mRNA expression as well as in inflammatory cytokine/chemokine activity. CONCLUSIONS: Overall, our results indicate that there are considerable differences in responses to respirable CNC based on gender with a higher pulmonary toxicity observed in female mice.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Celulosa/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Mucosa Respiratoria/efectos de los fármacos , Contaminantes Atmosféricos/química , Animales , Biomarcadores/metabolismo , Celulosa/química , Celulosa/ultraestructura , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanopartículas/ultraestructura , Tamaño de la Partícula , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN Mensajero/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Caracteres Sexuales , Organismos Libres de Patógenos Específicos , Propiedades de Superficie
7.
J Toxicol Environ Health A ; 79(21): 984-997, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27558875

RESUMEN

Over the past several years there has been an increased number of applications of cellulosic materials in many sectors, including the food industry, cosmetics, and pharmaceuticals. However, to date, there are few studies investigating the potential adverse effects of cellulose nanocrystals (CNC). The objective of this study was to determine long-term outcomes on the male reproductive system of mice upon repeated pharyngeal aspiration exposure to CNC. To achieve this, cauda epididymal sperm samples were analyzed for sperm concentration, motility, morphological abnormalities, and DNA damage. Testicular and epididymal oxidative damage was evaluated, as well as histopathology examination of testes. In addition, changes in levels of testosterone in testes and serum and of luteinizing hormone (LH) in serum were determined. Three months after the last administration, CNC exposure significantly altered sperm concentration, motility, cell morphology, and sperm DNA integrity. These parameters correlated with elevated proinflammatory cytokines levels and myeloperoxidase (MPO) activity in testes, as well as oxidative stress in both testes and epididymis. Exposure to CNC also produced damage to testicular structure, as evidenced by presence of interstitial edema, frequent dystrophic seminiferous tubules with arrested spermatogenesis and degenerating spermatocytes, and imbalance in levels of testosterone and LH. Taken together, these results demonstrate that pulmonary exposure to CNC induces sustained adverse effects in spermatocytes/spermatozoa, suggesting male reproductive toxicity.


Asunto(s)
Celulosa/toxicidad , Epidídimo/efectos de los fármacos , Exposición por Inhalación/análisis , Hormona Luteinizante/sangre , Nanopartículas/toxicidad , Testosterona/metabolismo , Animales , Daño del ADN , Masculino , Ratones , Ratones Endogámicos C57BL , Recuento de Espermatozoides , Espermatozoides/efectos de los fármacos , Testosterona/sangre
8.
Toxicol Appl Pharmacol ; 272(2): 373-83, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23886933

RESUMEN

The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D.


Asunto(s)
Biocombustibles/toxicidad , Gasolina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Neumonía/inducido químicamente , Emisiones de Vehículos/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Femenino , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/patología
9.
Toxicol Lett ; 317: 1-12, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562913

RESUMEN

During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.5 h with acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) filaments, and collected in cell culture medium. Characterization of the culture medium revealed that repeat print runs with an identical filament yield various amounts of particles and organic compounds. Mean particle sizes in cell culture medium were 201 ±â€¯18 nm and 202 ±â€¯8 nm for PC and ABS, respectively. At 24 h post-exposure, both PC and ABS emissions induced a dose dependent significant cytotoxicity, oxidative stress, apoptosis, necrosis, and production of pro-inflammatory cytokines and chemokines in SAEC. Though the emissions may not completely represent all possible exposure scenarios, this study indicate that the FFF could induce toxicological effects. Further studies are needed to quantify the detected chemicals in the emissions and their corresponding toxicological effects.


Asunto(s)
Resinas Acrílicas/toxicidad , Butadienos/toxicidad , Células Epiteliales/efectos de los fármacos , Nanopartículas/toxicidad , Cemento de Policarboxilato/toxicidad , Poliestirenos/toxicidad , Impresión Tridimensional , Mucosa Respiratoria/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Mediadores de Inflamación/metabolismo , Necrosis , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/ultraestructura , Medición de Riesgo , Factores de Tiempo
10.
Chemosphere ; 171: 671-680, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28061425

RESUMEN

Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity.


Asunto(s)
Celulosa/toxicidad , Células Epiteliales/efectos de los fármacos , Nanofibras/toxicidad , Nanopartículas/toxicidad , Células A549 , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamación/metabolismo , Pulmón/citología
11.
Environ Mol Mutagen ; 56(2): 265-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25327512

RESUMEN

Altering the fuel source from petroleum-based ultralow sulfur diesel to biodiesel and its blends is considered by many to be a sustainable choice for controlling exposures to particulate material. As the exhaust of biodiesel/diesel blends is composed of a combination of combustion products of polycyclic aromatic hydrocarbons and fatty acid methyl esters, we hypothesize that 50% biodiesel/diesel blend (BD50) exposure could induce harmful outcomes because of its ability to trigger oxidative damage. Here, adverse effects were compared in murine male reproductive organs after pharyngeal aspiration with particles generated by engine fueled with BD50 or neat petroleum diesel (D100). When compared with D100, exposure to BD50 significantly altered sperm integrity, including concentration, motility, and morphological abnormalities, as well as increasing testosterone levels in testes during the time course postexposure. Serum level of luteinizing hormone was significantly depleted only after BD50 exposure. Moreover, we observed that exposure to BD50 significantly increased sperm DNA fragmentation and the upregulation of inflammatory cytokines in the serum and testes on Day 7 postexposure when compared with D100. Histological evaluation of testes sections from BD50 exposure indicated more noticeable interstitial edema, degenerating spermatocytes, and dystrophic seminiferous tubules with arrested spermatogenesis. Significant differences in the level of oxidative stress assessed by accumulation of lipid peroxidation products and depletion of glutathione were detected on exposure to respirable BD50 and D100. Taken together, these results indicate that exposure of mice to inhalable BD50 caused more pronounced adverse effects on male reproductive function than diesel.


Asunto(s)
Biocombustibles/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Fragmentación del ADN/efectos de los fármacos , Gasolina/efectos adversos , Humanos , Masculino , Ratones , Petróleo/efectos adversos , Testículo/efectos de los fármacos , Emisiones de Vehículos/toxicidad
12.
ACS Sustain Chem Eng ; 2(7): 1691-1698, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26753107

RESUMEN

The use of cellulose as building blocks for the development of novel functional materials is rapidly growing. Cellulose nanocrystals (CNC), with advantageous chemical and mechanical properties, have gained prominence in a number of applications, such as in nanofillers in polymer composites, building materials, cosmetics, food, and the drug industry. Therefore, it becomes critical to evaluate the potential health effects associated with CNC exposures. The objective of this study was to compare pulmonary outcomes caused by exposure of C57BL/6 mice to two different processed forms of CNC derived from wood, i.e., CNCS (10 wt %; gel/suspension) and CNCP (powder), and compare to asbestos induced responses. Pharyngeal aspiration with CNCS and CNCP was found to facilitate innate inflammatory response assessed by an increase in leukocytes and eosinophils recovered by bronchoalveolar lavage (BAL). Biomarkers of tissue damage were elevated to a higher extent in mice exposed to CNCP. Compared to CNCP, CNCS caused a significant increase in the accumulation of oxidatively modified proteins. The up-regulation of inflammatory cytokines was higher in the lungs after CNCS treatments. Most importantly, CNCP materials were significantly longer than CNCS. Taken together, our data suggests that particle morphology and nanosize dimensions of CNCs, regardless of the same source, may be critical factors affecting the type of innate immune inflammatory responses. Because various processes have been developed for producing highly sophisticated nanocellulose materials, detailed assessment of specific health outcomes with respect to their physical-structural-chemical properties is highly warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA