Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(15): 3277-3290.e16, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37413988

RESUMEN

The Alpha, Beta, and Gamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and 2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which, in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide. We find that source-sink dynamics varied substantially by VOC and identify countries that acted as global and regional hubs of dissemination. We demonstrate the declining role of presumed origin countries of VOCs in their global dispersal, estimating that India contributed <15% of Delta exports and South Africa <1%-2% of Omicron dispersal. We estimate that >80 countries had received introductions of Omicron within 100 days of its emergence, associated with accelerated passenger air travel and higher transmissibility. Our study highlights the rapid dispersal of highly transmissible variants, with implications for genomic surveillance along the hierarchical airline network.


Asunto(s)
Viaje en Avión , COVID-19 , Humanos , Filogenia , SARS-CoV-2
2.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32359424

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Teorema de Bayes , COVID-19 , China/epidemiología , Infecciones por Coronavirus/virología , Monitoreo Epidemiológico , Humanos , Funciones de Verosimilitud , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Viaje
3.
Cell ; 172(6): 1160-1162, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29522736

RESUMEN

The emergence and spread of Zika virus in the Americas continues to challenge our disease surveillance systems. Virus genome sequencing during the epidemic uncovered the timescale of Zika virus transmission and spread. Yet, we are only beginning to explore how genomics can enhance our responses to emerging viruses.


Asunto(s)
Genoma Viral/genética , Genómica/métodos , Infección por el Virus Zika/transmisión , Virus Zika/genética , Américas/epidemiología , Brasil/epidemiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Epidemias , Geografía , Humanos , Virus Zika/patogenicidad , Infección por el Virus Zika/virología
4.
Nature ; 610(7930): 154-160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35952712

RESUMEN

The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , Ciudades/epidemiología , Trazado de Contacto , Inglaterra/epidemiología , Genoma Viral/genética , Humanos , Cuarentena/legislación & jurisprudencia , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/aislamiento & purificación , Viaje/legislación & jurisprudencia
6.
PLoS Biol ; 19(5): e3001236, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33961632

RESUMEN

With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Poliproteínas/genética , Proteínas Virales/genética
7.
J Clin Microbiol ; 61(12): e0015223, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37982611

RESUMEN

Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.


Asunto(s)
Alphavirus , Culicidae , Dengue , Virus de la Encefalitis Equina del Este , Encefalomielitis Equina Oriental , Encefalomielitis Equina Venezolana , Humanos , Animales , Caballos/genética , Virus de la Encefalitis Equina del Este/genética , Encefalomielitis Equina Venezolana/diagnóstico , Encefalomielitis Equina Venezolana/epidemiología , Culicidae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Filogenia , Estudios Prospectivos , Vigilancia en Salud Pública , Estudios Retrospectivos , Alphavirus/genética , ARN
8.
Nature ; 544(7650): 309-315, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405027

RESUMEN

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Asunto(s)
Ebolavirus/genética , Ebolavirus/fisiología , Genoma Viral/genética , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Clima , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/aislamiento & purificación , Geografía , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Internacionalidad , Modelos Lineales , Epidemiología Molecular , Filogenia , Viaje/legislación & jurisprudencia , Viaje/estadística & datos numéricos
9.
Clin Infect Dis ; 75(1): e224-e233, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34549260

RESUMEN

BACKGROUND: The public health impact of the coronavirus disease 2019 (COVID-19) pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. METHODS: Using a mathematical model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, COVID-19 disease and clinical care, we explore the public-health impact of different potential therapeutics, under a range of scenarios varying healthcare capacity, epidemic trajectories; and drug efficacy in the absence of supportive care. RESULTS: The impact of drugs like dexamethasone (delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R = 1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalization) could have much greater benefits, particularly in resource-poor settings facing large epidemics. CONCLUSIONS: Advances in the treatment of COVID-19 to date have been focused on hospitalized-patients and predicated on an assumption of adequate access to supportive care. Therapeutics delivered earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Costo de Enfermedad , Humanos , Pandemias/prevención & control , Preparaciones Farmacéuticas
10.
Emerg Infect Dis ; 28(3): 709-712, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963505

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant has been hypothesized to cause more severe illness than previous variants, especially in children. Successive SARS-CoV-2 IgG serosurveys in the Brazilian Amazon showed that age-specific attack rates and proportions of symptomatic SARS-CoV-2 infections were similar before and after Gamma variant emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Brasil/epidemiología , Niño , Humanos
11.
Mol Biol Evol ; 38(8): 3486-3493, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33528560

RESUMEN

Spatially explicit phylogeographic analyses can be performed with an inference framework that employs relaxed random walks to reconstruct phylogenetic dispersal histories in continuous space. This core model was first implemented 10 years ago and has opened up new opportunities in the field of phylodynamics, allowing researchers to map and analyze the spatial dissemination of rapidly evolving pathogens. We here provide a detailed and step-by-step guide on how to set up, run, and interpret continuous phylogeographic analyses using the programs BEAUti, BEAST, Tracer, and TreeAnnotator.


Asunto(s)
Filogeografía/métodos , Programas Informáticos , Teorema de Bayes , Evolución Biológica
12.
Mol Biol Evol ; 38(4): 1608-1613, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33316043

RESUMEN

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of SARS-CoV-2 have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analyzed with gold-standard phylogeographic approaches. To tackle this practical limitation, we here describe and apply a rapid analytical pipeline to analyze the spatiotemporal dispersal history and dynamics of SARS-CoV-2 lineages. As a proof of concept, we focus on the Belgian epidemic, which has had one of the highest spatial densities of available SARS-CoV-2 genomes. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Genoma Viral , Filogeografía , SARS-CoV-2/genética , Bélgica , COVID-19/epidemiología , Evolución Molecular , Genómica , Humanos , Funciones de Verosimilitud , Mutación , Aislamiento de Pacientes , Filogenia , Distanciamiento Físico , Análisis Espacio-Temporal , Flujo de Trabajo
13.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32764827

RESUMEN

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Asunto(s)
Genoma Viral , Enfermedades de los Primates/virología , Fiebre Amarilla/veterinaria , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética , Zoonosis/virología , Animales , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Filogenia , Filogeografía , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/transmisión , Primates/virología , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación , Zoonosis/epidemiología , Zoonosis/transmisión
14.
BMC Infect Dis ; 22(1): 127, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123418

RESUMEN

BACKGROUND: The city of Manaus, north Brazil, was stricken by a second epidemic wave of SARS-CoV-2 despite high seroprevalence estimates, coinciding with the emergence of the Gamma (P.1) variant. Reinfections were postulated as a partial explanation for the second surge. However, accurate calculation of reinfection rates is difficult when stringent criteria as two time-separated RT-PCR tests and/or genome sequencing are required. To estimate the proportion of reinfections caused by Gamma during the second wave in Manaus and the protection conferred by previous infection, we identified anti-SARS-CoV-2 antibody boosting in repeat blood donors as a mean to infer reinfection. METHODS: We tested serial blood samples from unvaccinated repeat blood donors in Manaus for the presence of anti-SARS-CoV-2 IgG antibodies using two assays that display waning in early convalescence, enabling the detection of reinfection-induced boosting. Donors were required to have three or more donations, being at least one during each epidemic wave. We propose a strict serological definition of reinfection (reactivity boosting following waning like a V-shaped curve in both assays or three spaced boostings), probable (two separate boosting events) and possible (reinfection detected by only one assay) reinfections. The serial samples were used to divide donors into six groups defined based on the inferred sequence of infection and reinfection with non-Gamma and Gamma variants. RESULTS: From 3655 repeat blood donors, 238 met all inclusion criteria, and 223 had enough residual sample volume to perform both serological assays. We found 13.6% (95% CI 7.0-24.5%) of all presumed Gamma infections that were observed in 2021 were reinfections. If we also include cases of probable or possible reinfections, these percentages increase respectively to 22.7% (95% CI 14.3-34.2%) and 39.3% (95% CI 29.5-50.0%). Previous infection conferred a protection against reinfection of 85.3% (95% CI 71.3-92.7%), decreasing to respectively 72.5% (95% CI 54.7-83.6%) and 39.5% (95% CI 14.1-57.8%) if probable and possible reinfections are included. CONCLUSIONS: Reinfection by Gamma is common and may play a significant role in epidemics where Gamma is prevalent, highlighting the continued threat variants of concern pose even to settings previously hit by substantial epidemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Donantes de Sangre , Brasil/epidemiología , Humanos , Reinfección , Estudios Seroepidemiológicos
15.
Clin Infect Dis ; 73(11): 2045-2054, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33956939

RESUMEN

BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.


Asunto(s)
COVID-19 , Dengue , Brasil/epidemiología , Niño , Preescolar , Estudios de Cohortes , Dengue/epidemiología , Humanos , Pandemias , SARS-CoV-2
16.
Emerg Infect Dis ; 27(6): 1737-1740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33871331

RESUMEN

We documented 4 cases of severe acute respiratory syndrome coronavirus 2 reinfection by non-variant of concern strains among healthcare workers in Campinas, Brazil. We isolated infectious particles from nasopharyngeal secretions during both infection episodes. Improved and continued protection measures are necessary to mitigate the risk for reinfection among healthcare workers.


Asunto(s)
COVID-19/diagnóstico , Personal de Salud , Reinfección/diagnóstico , Reinfección/virología , SARS-CoV-2/aislamiento & purificación , Esparcimiento de Virus , Adulto , Brasil/epidemiología , COVID-19/epidemiología , Femenino , Humanos , Persona de Mediana Edad , Reinfección/terapia
17.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31801869

RESUMEN

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.


Asunto(s)
Evolución Molecular , Genoma Viral , Orthobunyavirus/clasificación , Orthobunyavirus/genética , Filogenia , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , Ecuador , Humanos , Modelos Moleculares , Conformación Proteica , Selección Genética , América del Sur , Proteínas Virales/química , Proteínas Virales/genética , Secuenciación Completa del Genoma
18.
PLoS Pathog ; 15(12): e1007976, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31809523

RESUMEN

Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.


Asunto(s)
Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/genética , África Central/epidemiología , África Oriental/epidemiología , Humanos
19.
Proc Natl Acad Sci U S A ; 115(5): 1051-1056, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339468

RESUMEN

Ukraine has one of the largest HIV epidemics in Europe, historically driven by people who inject drugs (PWID). The epidemic showed signs of stabilization in 2012, but the recent war in eastern Ukraine may be reigniting virus spread. We investigated the movement of HIV-infected people within Ukraine before and during the conflict. We analyzed HIV-1 subtype-A pol nucleotide sequences sampled during 2012-2015 from 427 patients of 24 regional AIDS centers and used phylogeographic analysis to reconstruct virus movement among different locations in Ukraine. We then tested for correlations between reported PWID behaviors and reconstructed patterns of virus spread. Our analyses suggest that Donetsk and Lugansk, two cities not controlled by the Ukrainian government in eastern Ukraine, were significant exporters of the virus to the rest of the country. Additional analyses showed that viral dissemination within the country changed after 2013. Spearman correlation analysis showed that incoming virus flow was correlated with the number of HIV-infected internally displaced people. Additionally, there was a correlation between more intensive virus movement and locations with a higher proportion of PWID practicing risky sexual behaviors. Our findings suggest that effective prevention responses should involve internally displaced people and people who frequently travel to war-affected regions. Scale-up of harm reduction services for PWID will be an important factor in preventing new local HIV outbreaks in Ukraine.


Asunto(s)
Infecciones por VIH/epidemiología , Epidemiología Molecular , Guerra , Control de Enfermedades Transmisibles , Epidemias , Femenino , Geografía , Infecciones por VIH/complicaciones , VIH-1/genética , Humanos , Funciones de Verosimilitud , Masculino , Filogenia , Asunción de Riesgos , Conducta Sexual , Abuso de Sustancias por Vía Intravenosa/complicaciones , Ucrania/epidemiología
20.
J Infect Dis ; 220(2): 233-243, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30805610

RESUMEN

BACKGROUND: Estimation of temporal changes in human immunodeficiency virus (HIV) transmission patterns can help to elucidate the impact of preventive strategies and public health policies. METHODS: Portuguese HIV-1 subtype B and G pol genetic sequences were appended to global reference data sets to identify country-specific transmission clades. Bayesian birth-death models were used to estimate subtype-specific effective reproductive numbers (Re). Discrete trait analysis (DTA) was used to quantify mixing among transmission groups. RESULTS: We identified 5 subtype B Portuguese clades (26-79 sequences) and a large monophyletic subtype G Portuguese clade (236 sequences). We estimated that major shifts in HIV-1 transmission occurred around 1999 (95% Bayesian credible interval [BCI], 1998-2000) and 2000 (95% BCI, 1998-2001) for subtypes B and G, respectively. For subtype B, Re dropped from 1.91 (95% BCI, 1.73-2.09) to 0.62 (95% BCI,.52-.72). For subtype G, Re decreased from 1.49 (95% BCI, 1.39-1.59) to 0.72 (95% BCI, .63-.8). The DTA suggests that people who inject drugs (PWID) and heterosexuals were the source of most (>80%) virus lineage transitions for subtypes G and B, respectively. CONCLUSIONS: The estimated declines in Re coincide with the introduction of highly active antiretroviral therapy and the scale-up of harm reduction for PWID. Inferred transmission events across transmission groups emphasize the importance of prevention efforts for bridging populations.


Asunto(s)
Infecciones por VIH/epidemiología , Infecciones por VIH/transmisión , VIH-1/genética , Teorema de Bayes , Infecciones por VIH/virología , Humanos , Epidemiología Molecular , Filogenia , Portugal/epidemiología , Salud Pública , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA