Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
RNA ; 23(4): 530-545, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053272

RESUMEN

Transgenerational transmission of genome-regulatory epigenetic information can determine phenotypes in the progeny of sexual reproduction. Sequence specificity of transgenerational regulation derives from small RNAs assembled into Piwi-protein complexes. Known targets of transgenerational regulation are primarily transposons and transposon-derived sequences. Here, we extend the scope of Piwi-mediated transgenerational regulation to include unique noncoding RNA loci. Ciliates such as Tetrahymena have a phenotypically silent germline micronucleus and an expressed somatic macronucleus, which is differentiated anew from a germline genome copy in sexual reproduction. We show that the nuclear-localized Tetrahymena Piwi protein Twi8p shuttles from parental to zygotic macronuclei. Genetic elimination of Twi8p has no phenotype for cells in asexual growth. On the other hand, cells lacking Twi8p arrest in sexual reproduction with zygotic nuclei that retain the germline genome structure, without the DNA elimination and fragmentation required to generate a functional macronucleus. Twi8p-bound small RNAs originate from long-noncoding RNAs with a terminal hairpin, which become detectable in the absence of Twi8p. Curiously, the loci that generate Twi8p-bound small RNAs are essential for asexual cell growth, even though Twi8 RNPs are essential only in sexual reproduction. Our findings suggest the model that Twi8 RNPs act on silent germline chromosomes to permit their conversion to expressed macronuclear chromosomes. Overall this work reveals that a Piwi protein carrying small RNAs from long-noncoding RNA loci has transgenerational function in establishing zygotic nucleus competence for gene expression.


Asunto(s)
Proteínas Argonautas/genética , Genoma de Protozoos , Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN Interferente Pequeño/genética , Tetrahymena/genética , Proteínas Argonautas/metabolismo , Cromosomas , ADN Protozoario/genética , ADN Protozoario/metabolismo , Reordenamiento Génico , Macronúcleo/genética , Macronúcleo/metabolismo , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Proteínas Protozoarias/metabolismo , ARN Protozoario/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducción Asexuada/genética , Tetrahymena/crecimiento & desarrollo , Tetrahymena/metabolismo
2.
Dev Dyn ; 245(9): 925-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27294288

RESUMEN

BACKGROUND: In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS: In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS: The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Unión Proteica/genética , Interferencia de ARN , ARN Mensajero Almacenado/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
EMBO J ; 30(18): 3823-9, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21822213

RESUMEN

Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 activity in differentiating cells.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Ciclo Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Células Madre/fisiología , Animales , Células Cultivadas
4.
EMBO J ; 30(3): 533-45, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21169991

RESUMEN

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development. To obtain a comprehensive picture of GLD-1 interactions with the transcriptome, we identified GLD-1-associated mRNAs by RNA immunoprecipitation followed by microarray detection. Based on the computational analysis of these mRNAs we generated a predictive model, where GLD-1 association with mRNA is determined by the strength and number of 7-mer GLD-1-binding motifs (GBMs) within UTRs. We verified this quantitative model both in vitro, by competition GLD-1/GBM-binding experiments to determine relative affinity, and in vivo, by 'transplantation' experiments, where 'weak' and 'strong' GBMs imposed translational repression of increasing strength on a non-target mRNA. This study demonstrates that transcriptome-wide identification of RBP mRNA targets combined with quantitative computational analysis can generate highly predictive models of post-transcriptional regulatory networks.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Redes Reguladoras de Genes/genética , Modelos Biológicos , Dominios y Motivos de Interacción de Proteínas/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Unión Competitiva , Caenorhabditis elegans/metabolismo , Biología Computacional/métodos , Inmunoprecipitación , Análisis por Micromatrices
5.
PLoS Genet ; 7(1): e1001269, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21253564

RESUMEN

In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3' UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, a simple interpretation is that QK regulates a large set of oligodendrocyte precursor genes indirectly by increasing the intracellular concentration of hnRNP A1. Together, the data show that hnRNP A1 is an important QK target that contributes to its control of myelin gene expression.


Asunto(s)
Regiones no Traducidas 3' , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Oligodendroglía/metabolismo , Proteínas de Unión al ARN/genética , Empalme Alternativo , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Secuencia Conservada , Exones , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Ratones , Glicoproteína Asociada a Mielina/genética , Oligodendroglía/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estabilidad del ARN , ARN Interferente Pequeño/genética , Ratas , Alineación de Secuencia
6.
Proc Natl Acad Sci U S A ; 106(48): 20252-7, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19915141

RESUMEN

Totipotent stem cells have the potential to differentiate into every cell type. Renewal of totipotent stem cells in the germline and cellular differentiation during early embryogenesis rely upon posttranscriptional regulatory mechanisms. The Caenorhabditis elegans RNA binding protein, MEX-3, plays a key role in both processes. MEX-3 is a maternally-supplied factor that controls the RNA metabolism of transcripts encoding critical cell fate determinants. However, the nucleotide sequence specificity and requirements of MEX-3 mRNA recognition remain unclear. Only a few candidate regulatory targets have been identified, and the full extent of the network of MEX-3 targets is not known. Here, we define the consensus sequence required for MEX-3 RNA recognition and demonstrate that this element is required for MEX-3 dependent regulation of gene expression in live worms. Based on this work, we identify several candidate MEX-3 targets that help explain its dual role in regulating germline stem cell totipotency and embryonic cell fate specification.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Unión al ARN/metabolismo , Células Madre Totipotentes/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Biolística , Caenorhabditis elegans , Diferenciación Celular/genética , Biología Computacional , ADN Complementario/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Células Madre Totipotentes/citología
7.
Crit Rev Biochem Mol Biol ; 43(2): 135-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18365862

RESUMEN

Most sexually reproducing metazoans are anisogamous, meaning that the two gametes that combine during fertilization differ greatly in size. By convention, the larger gametes are considered female and are called ova, while the smaller gametes are male and are called sperm. In most cases, both gametes contribute similarly to the chromosomal content of the new organism. In contrast, the maternal gamete contributes nearly all of the cytoplasm. This cytoplasmic contribution is crucial to patterning early development; it contains the maternal proteins and transcripts that guide the early steps of development prior to the activation of zygotic transcription. This review compares and contrasts early development in common laboratory model organisms in order to highlight the similarities and differences in the regulation of maternal factors. We will focus on the production and reversible silencing of maternal mRNAs during oogenesis, their asymmetric activation after fertilization, and their subsequent clearance at the midblastula transition. Where possible, insights from mechanistic studies are presented.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , ARN Mensajero Almacenado/genética , Animales , Tipificación del Cuerpo/genética , Oogénesis/genética , Procesamiento Postranscripcional del ARN
8.
RNA ; 14(12): 2685-97, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18952820

RESUMEN

Specification of Caenorhabditis elegans body axes and cell fates occurs prior to the activation of zygotic transcription. Several CCCH-type tandem zinc finger (TZF) proteins coordinate local activation of quiescent maternal mRNAs after fertilization, leading to asymmetric expression of factors required for patterning. The primary determinant of posterior fate is the TZF protein POS-1. Mutants of pos-1 are maternal effect lethal with a terminal phenotype that includes excess pharyngeal tissue and no endoderm or germline. Here, we delineate the consensus POS-1 recognition element (PRE) required for specific recognition of its target mRNAs. The PRE is necessary but not sufficient to pattern the expression of a reporter. The PRE is distinct from sequences recognized by related proteins from both mammals and nematodes, demonstrating that variants of this protein family can recognize divergent RNA sequences. The PRE is found within the 3' untranslated region of 227 maternal transcripts required for early development, including genes involved in endoderm and germline specification. The results enable prediction of novel targets that explain the pleiotropy of the pos-1 phenotype.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Desarrollo Embrionario , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regiones no Traducidas
9.
Biochim Biophys Acta ; 1779(8): 486-94, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18590840

RESUMEN

Myelin is a specialized structure of the nervous system that both enhances electrical conductance and protects neurons from degeneration. In the central nervous system, extensively polarized oligodendrocytes form myelin by wrapping cellular processes in a spiral pattern around neuronal axons. Myelin formation requires the oligodendrocyte to regulate gene expression in response to changes in its extracellular environment. Because these changes occur at a distance from the cell body, post-transcriptional control of gene expression allows the cell to fine-tune its response. Here, we review the RNA-binding proteins that control myelin formation in the brain, highlighting the molecular mechanisms by which they control gene expression and drawing parallels from studies in other cell types.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Vaina de Mielina/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Axones/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Ratones Quaking , Oligodendroglía/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal
10.
J Gen Physiol ; 144(1): 105-14, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24935744

RESUMEN

The calcium-binding protein calmodulin (CaM) directly binds to membrane transport proteins to modulate their function in response to changes in intracellular calcium concentrations. Because CaM recognizes and binds to a wide variety of target sequences, identifying CaM-binding sites is difficult, requiring intensive sequence gazing and extensive biochemical analysis. Here, we describe a straightforward computational script that rapidly identifies canonical CaM-binding motifs within an amino acid sequence. Analysis of the target sequences from high resolution CaM-peptide structures using this script revealed that CaM often binds to sequences that have multiple overlapping canonical CaM-binding motifs. The addition of a positive charge discriminator to this meta-analysis resulted in a tool that identifies potential CaM-binding domains within a given sequence. To allow users to search for CaM-binding motifs within a protein of interest, perform the meta-analysis, and then compare the results to target peptide-CaM structures deposited in the Protein Data Bank, we created a website and online database. The availability of these tools and analyses will facilitate the design of CaM-related studies of ion channels and membrane transport proteins.


Asunto(s)
Calmodulina/genética , Calmodulina/metabolismo , Análisis por Conglomerados , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Calmodulina/química , Predicción , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Estructura Secundaria de Proteína
11.
Mol Biol Cell ; 23(23): 4473-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23034181

RESUMEN

RNA-binding proteins (RBPs) coordinate cell fate specification and differentiation in a variety of systems. RNA regulation is critical during oocyte development and early embryogenesis, in which RBPs control expression from maternal mRNAs encoding key cell fate determinants. The Caenorhabditis elegans Notch homologue glp-1 coordinates germline progenitor cell proliferation and anterior fate specification in embryos. A network of sequence-specific RBPs is required to pattern GLP-1 translation. Here, we map the cis-regulatory elements that guide glp-1 regulation by the CCCH-type tandem zinc finger protein POS-1 and the STAR-domain protein GLD-1. Our results demonstrate that both proteins recognize the glp-1 3' untranslated region (UTR) through adjacent, overlapping binding sites and that POS-1 binding excludes GLD-1 binding. Both factors are required to repress glp-1 translation in the embryo, suggesting that they function in parallel regulatory pathways. It is intriguing that two equivalent POS-1-binding sites are present in the glp-1 3' UTR, but only one, which overlaps with a translational derepression element, is functional in vivo. We propose that POS-1 regulates glp-1 mRNA translation by blocking access of other RBPs to a key regulatory sequence.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas Portadoras , Péptido 1 Similar al Glucagón , Regiones no Traducidas 3'/genética , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Oogénesis/genética , Proteínas de Unión al ARN , Secuencias Reguladoras de Ácidos Nucleicos/genética , Regiones no Traducidas/genética
12.
J Biol Chem ; 282(12): 8883-94, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17264081

RESUMEN

Embryonic development requires maternal proteins and RNA. In Caenorhabditis elegans, a gradient of CCCH tandem zinc finger (TZF) proteins coordinates axis polarization and germline differentiation. These proteins govern expression from maternal mRNAs by an unknown mechanism. Here we show that the TZF protein MEX-5, a primary anterior determinant, is an RNA-binding protein that recognizes linear RNA sequences with high affinity but low specificity. The minimal binding site is a tract of six or more uridines within a 9-13-nucleotide window. This sequence is remarkably abundant in the 3'-untranslated region of C. elegans transcripts, demonstrating that MEX-5 alone cannot specify mRNA target selection. In contrast, human TZF homologs tristetraprolin and ERF-2 bind with high specificity to UUAUUUAUU elements. We show that mutation of a single amino acid in each MEX-5 zinc finger confers tristetraprolin-like specificity to this protein. We propose that divergence of this discriminator residue modulates the RNA-binding specificity in this protein class. This residue is variable in nematode TZF proteins, but is invariant in other metazoans. Therefore, the divergence of TZF proteins and their critical role in early development is likely a nematode-specific adaptation.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Regulación de la Expresión Génica , ARN/química , Secuencia de Aminoácidos , Animales , Unión Competitiva , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Factores de Transcripción/metabolismo , Tristetraprolina/farmacología , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA