Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Trends Biochem Sci ; 44(9): 737-751, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31036407

RESUMEN

The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.


Asunto(s)
Complejo Mediador/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Mediador/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Eukaryot Cell ; 12(8): 1052-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23771905

RESUMEN

The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.


Asunto(s)
Histidina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transducción de Señal , Secuencia de Aminoácidos , Antifúngicos/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/patogenicidad , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Genetics ; 223(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36794645

RESUMEN

Opportunistic yeast pathogens arose multiple times in the Saccharomycetes class, including the recently emerged, multidrug-resistant (MDR) Candida auris. We show that homologs of a known yeast adhesin family in Candida albicans, the Hyr/Iff-like (Hil) family, are enriched in distinct clades of Candida species as a result of multiple, independent expansions. Following gene duplication, the tandem repeat-rich region in these proteins diverged extremely rapidly and generated large variations in length and ß-aggregation potential, both of which are known to directly affect adhesion. The conserved N-terminal effector domain was predicted to adopt a ß-helical fold followed by an α-crystallin domain, making it structurally similar to a group of unrelated bacterial adhesins. Evolutionary analyses of the effector domain in C. auris revealed relaxed selective constraint combined with signatures of positive selection, suggesting functional diversification after gene duplication. Lastly, we found the Hil family genes to be enriched at chromosomal ends, which likely contributed to their expansion via ectopic recombination and break-induced replication. Combined, these results suggest that the expansion and diversification of adhesin families generate variation in adhesion and virulence within and between species and are a key step toward the emergence of fungal pathogens.


Asunto(s)
Proteínas Fúngicas , Levaduras , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Levaduras/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Candida , Adhesinas Bacterianas/metabolismo
4.
Eukaryot Cell ; 10(2): 156-67, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21131436

RESUMEN

The histidine kinase-based phosphorelay has emerged as a common strategy among bacteria, fungi, protozoa, and plants for triggering important stress responses and interpreting developmental cues in response to environmental as well as chemical, nutritional, and hormone signals. The absence of this type of signaling mechanism in animals makes the so-called "two-component" pathway an attractive target for development of antimicrobial agents. The best-studied eukaryotic example of a two-component pathway is the SLN1 pathway in Saccharomyces cerevisiae, which responds to turgor and other physical properties associated with the fungal cell wall. One of the two phosphoreceiver proteins known as response regulators in this pathway is Skn7, a highly conserved stress-responsive transcription factor with a subset of activities that are dependent on SLN1 pathway phosphorylation and another subset that are independent. Interest in Skn7as a determinant in fungal virulence stems primarily from its well-established role in the oxidative stress response; however, the involvement of Skn7 in maintenance of cell wall integrity may also be relevant. Since the cell wall is crucial for fungal survival, structural and biosynthetic proteins affecting wall composition and signaling pathways that respond to wall stress are likely to play key roles in virulence. Here we review the molecular and phenotypic characteristics of different fungal Skn7 proteins and consider how each of these properties may contribute to fungal virulence.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/patogenicidad , Estrés Fisiológico , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica , Hongos/fisiología , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Saccharomyces cerevisiae/patogenicidad , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Virulencia
5.
J Mol Biol ; 433(21): 167215, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34450138

RESUMEN

Protein aggregation is a feature of numerous neurodegenerative diseases. However, regulated, often reversible, formation of protein aggregates, also known as condensates, helps control a wide range of cellular activities including stress response, gene expression, memory, cell development and differentiation. This review presents examples of aggregates found in biological systems, how they are used, and cellular strategies that control aggregation and disaggregation. We include features of the aggregating proteins themselves, environmental factors, co-aggregates, post-translational modifications and well-known aggregation-directed activities that influence their formation, material state, stability and dissolution. We highlight the emerging roles of biomolecular condensates in early animal development, and disaggregation processing proteins that have recently been shown to play key roles in gametogenesis and embryogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Gametogénesis/genética , Enfermedades Neurodegenerativas/genética , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Procesamiento Proteico-Postraduccional , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Eucariotas/citología , Células Eucariotas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Memoria/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
6.
Front Microbiol ; 12: 741572, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733258

RESUMEN

The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.

7.
Eukaryot Cell ; 8(5): 768-78, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19304952

RESUMEN

The bifunctional Saccharomyces cerevisiae Skn7 transcription factor regulates osmotic stress response genes as well as oxidative stress response genes; however, the mechanisms involved in these two types of regulation differ. Skn7 osmotic stress activity depends on the phosphorylation of the receiver domain aspartate, D427, by the Sln1 histidine kinase. In contrast, D427 and the SLN1-SKN7 phosphorelay are dispensable for the oxidative stress response, although the receiver domain is required. The majority of oxidative stress response genes regulated by Skn7 also are regulated by the redox-responsive transcription factor Yap1. It is therefore possible that the nuclearly localized Skn7 does not itself respond to the oxidant but simply cooperates with Yap1 when it translocates to the nucleus. We report here that oxidative stress leads to a phosphatase-sensitive, slow-mobility Skn7 variant. This suggests that Skn7 undergoes a posttranslational modification by phosphorylation following exposure to oxidant. Oxidant-dependent Skn7 phosphorylation was eliminated in strains lacking the Yap1 transcription factor. This suggests that the phosphorylation of Skn7 is regulated by Yap1. Mutations in the receiver domain of Skn7 were identified that affect its oxidative stress function. These mutations were found to compromise the association of Yap1 and Skn7 at oxidative stress response gene promoters. A working model is proposed in which the association of Yap1 with Skn7 in the nucleus is a prerequisite for Skn7 phosphorylation and the activation of oxidative stress response genes.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Factores de Transcripción/genética
8.
Mol Biol Cell ; 31(17): 1951-1961, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583737

RESUMEN

The Wnt/ß-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/ß-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor ß-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, ß-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that ß-catenin synthesis and degradation rates are unaffected but that the normal accumulation of ß-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated ß-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex-phosphorylated ß-catenin, but high-molecular-weight ß-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of ß-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate ß-catenin modifications that antagonize normal stabilization by Wnt signals.


Asunto(s)
Centrosoma/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Vía de Señalización Wnt
9.
Mol Biol Cell ; 31(13): 1324-1345, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32320318

RESUMEN

Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Desarrollo Embrionario , Agregación Patológica de Proteínas , Transportadoras de Casetes de Unión a ATP/fisiología , Animales , Humanos
10.
Mol Biol Cell ; 13(2): 412-24, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11854400

RESUMEN

The yeast "two-component" osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with a cis-acting element identified upstream of OCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Manosiltransferasas , Glicoproteínas de Membrana/metabolismo , Proteínas Quinasas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Regiones Promotoras Genéticas , Elementos de Respuesta , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Análisis de Secuencia de ADN , Transducción de Señal/fisiología , Secuencias Repetidas Terminales , Activación Transcripcional
11.
PLoS One ; 10(2): e0117192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710177

RESUMEN

The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones.


Asunto(s)
Proteínas de Choque Térmico/genética , Mitocondrias/enzimología , Aconitato Hidratasa/clasificación , Aconitato Hidratasa/genética , Animales , Teorema de Bayes , Coanoflagelados/genética , Endopeptidasa Clp/clasificación , Endopeptidasa Clp/genética , Proteínas de Choque Térmico/metabolismo , Funciones de Verosimilitud , Mitocondrias/metabolismo , Mutación , Filogenia , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Methods Enzymol ; 471: 291-317, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20946854

RESUMEN

The histidine kinase-based signal transduction pathway was first uncovered in bacteria and is a prominent form of regulation in prokaryotes. However, this type of signal transduction is not unique to prokaryotes; over the last decade two-component signal transduction pathways have been identified and characterized in diverse eukaryotes, from unicellular yeasts to multicellular land plants. A number of small but important differences have been noted in the architecture and function of eukaryotic pathways. Because of the powerful genetic approaches and facile molecular analysis associated with the yeast system, the SLN1 osmotic response pathway in Saccharomyces cerevisiae is particularly useful as a eukaryotic pathway model. This chapter provides an overview of genetic and biochemical methods that have been important in elucidating the stimulus-response events that underlie this pathway and in understanding the details of a eukaryotic His-Asp phosphorelay.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
13.
J Biol Chem ; 283(4): 1962-73, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18048366

RESUMEN

The yeast Sln1p sensor kinase is best known as an osmosensor involved in the regulation of the hyperosmolarity glycerol mitogen-activated protein kinase cascade. Down-regulation of Sln1 kinase activity occurs under hypertonic conditions and leads to phosphorylation of the Hog1p mitogen-activated protein kinase and increased osmotic stress-response gene expression. Conditions leading to kinase up-regulation include osmotic imbalance caused by glycerol retention in the glycerol channel mutant, fps1 (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367). The hypothesis that Sln1p kinase activity is responsive to turgor was first suggested by the increased Sln1p kinase activity in mutants lacking Fps1p in which glycerol accumulation leads to water uptake. Also consistent with the turgor hypothesis is the observation that reduced turgor caused by treatment of cells with nystatin, a drug that increases membrane permeability and causes cell shrinkage, reduced Sln1p kinase activity (Tao, W., Deschenes, R. J., and Fassler, J. S. (1999) J. Biol. Chem. 274, 360-367; Reiser, V., Raitt, D. C., and Saito, H. (2003) J. Cell Biol. 161, 1035-1040). The turgor hypothesis is revisited here in the context of the identification and characterization of the cell wall gene, CCW12, as a determinant of Sln1p activity. Results of this analysis suggest that the activity of the plasma membrane localized Sln1p is affected by the presence or absence of specific outer cell wall proteins and that this effect is independent of turgor.


Asunto(s)
Pared Celular/metabolismo , Glicerol/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Antifúngicos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/fisiología , Pared Celular/genética , Glicoproteínas , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nistatina/farmacología , Ósmosis/fisiología , Proteínas Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Equilibrio Hidroelectrolítico/fisiología
14.
Mol Microbiol ; 58(5): 1454-67, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16313629

RESUMEN

The Saccharomyces cerevisiae Yap1p and Skn7p transcription factors collaborate in the activation of oxidative stress response (OSR) genes. Although Yap1p and Skn7p oxidative stress response elements (YRE, OSRE) have been characterized and identified in some OSR genes, many OSR genes lack such elements. In this study, the complex, oxidative responsive, CCP1 promoter was used as a model to investigate the cis-acting elements responsible for activation by oxidative stress. In addition to consensus YRE and OSRE sequences, novel Yap1p and Skn7p binding sites were identified in the CCP1 promoter. These new sites were found to mediate Yap1p- and Skn7p-dependent activation of OSR genes including TSA1 and CTT1 previously thought to lack Yap1p and Skn7p binding sites. The novel YREs and OSREs were found to be enriched in the promoter regions of a set of 179 OSR genes. The widespread existence of novel Yap1p and Skn7p binding sites strongly suggest that direct binding of Yap1p and Skn7p is responsible for activation of many more OSR genes than previously believed.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Proteínas de Unión al ADN/química , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/química
15.
Eukaryot Cell ; 3(6): 1544-56, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15590828

RESUMEN

Yeast Sln1p is an osmotic stress sensor with histidine kinase activity. Modulation of Sln1 kinase activity in response to changes in the osmotic environment regulates the activity of the osmotic response mitogen-activated protein kinase pathway and the activity of the Skn7p transcription factor, both important for adaptation to changing osmotic stress conditions. Many aspects of Sln1 function, such as how kinase activity is regulated to allow a rapid response to the continually changing osmotic environment, are not understood. To gain insight into Sln1p function, we conducted a two-hybrid screen to identify interactors. Mog1p, a protein that interacts with the yeast Ran1 homolog, Gsp1p, was identified in this screen. The interaction with Mog1p was characterized in vitro, and its importance was assessed in vivo. mog1 mutants exhibit defects in SLN1-SKN7 signal transduction and mislocalization of the Skn7p transcription factor. The requirement for Mog1p in normal localization of Skn7p to the nucleus does not fully account for the mog1-related defects in SLN1-SKN7 signal transduction, raising the possibility that Mog1p may play a role in Skn7 binding and activation of osmotic response genes.


Asunto(s)
Proteínas Nucleares/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP ran/fisiología , Transporte Activo de Núcleo Celular , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Medios de Cultivo/farmacología , ADN/química , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Microscopía Fluorescente , Mutación , Proteínas Nucleares/metabolismo , Ósmosis , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Transducción de Señal , Temperatura , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Proteína de Unión al GTP ran/metabolismo
16.
Mol Microbiol ; 43(2): 459-73, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11985722

RESUMEN

The yeast histidine kinase, Sln1p, is a plasma membrane-associated osmosensor that regulates the activity of the osmotic stress MAP kinase pathway. Changes in the osmotic environment of the cell influence the autokinase activity of the cytoplasmic kinase domain of Sln1p. Neither the nature of the stimulus, the mechanism by which the osmotic signal is transduced nor the manner in which the kinase is regulated is currently clear. We have identified several mutations located in the linker region of the Sln1 kinase (just upstream of the kinase domain) that cause hyperactivity of the Sln1 kinase. This region of histidine kinases is largely uncharacterized, but its location between the transmembrane domains and the cytoplasmic kinase domain suggests that it may have a potential role in signal transduction. In this study, we have investigated the Sln1 linker region in order to understand its function in signal transduction and regulation of Sln1 kinase activity. Our results indicate that the linker region forms a coiled-coil structure and suggest a mechanism by which alterations induced by osmotic stress influence kinase activity by altering the alignment of the phospho-accepting histidine with respect to the catalytic domain of the kinase.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Citoplasma , Proteínas Fúngicas/genética , Péptidos y Proteínas de Señalización Intracelular , Leucina Zippers , Datos de Secuencia Molecular , Mutagénesis , Fenotipo , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad
17.
Eukaryot Cell ; 2(6): 1304-14, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14665464

RESUMEN

Sln1p is a plasma membrane-localized two-component histidine kinase that functions as an osmotic stress sensor in Saccharomyces cerevisiae. Changes in osmotic pressure modulate Sln1p kinase activity, which, together with Ypd1p, a phosphorelay intermediate, changes the phosphorylation status of two response regulators, Ssk1p and Skn7p. Ssk1p controls the activity of the HOG1 mitogen-activated protein kinase pathway. Skn7p is a nuclearly localized transcription factor that regulates genes involved in cell wall integrity and other processes. Subcellular compartmentalization may therefore play an important role in eukaryotic two-component pathway regulation. We have studied the subcellular localization of SLN1 pathway components and find that Ypd1p is a dynamic protein with a role in shuttling the osmotic stress signal from Sln1p to Ssk1p in the cytosol and to Skn7p in the nucleus. The need to translocate the signal into different intracellular compartments contributes a spatial dimension to eukaryotic two-component pathways compared to the prototypical two-component pathways of prokaryotes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Genes Reporteros , Proteínas Fluorescentes Verdes , Péptidos y Proteínas de Señalización Intracelular , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Modelos Biológicos , Presión Osmótica , Estrés Oxidativo , Fosforilación , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Factores de Transcripción/genética
18.
Yeast ; 19(2): 99-114, 2002 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-11788965

RESUMEN

REC102 is a meiosis-specific early exchange gene absolutely required for meiotic recombination in Saccharomyces cerevisiae. Sequence analysis of REC102 indicates that there are multiple potential regulatory elements in its promoter region, and a possible regulatory element in the coding region. This suggests that the regulation of REC102 may be complex and may include elements not yet reported in other meiotic genes. To identify potential cis-regulatory elements, phylogenetic footprinting analysis was used. REC102 homologues were cloned from other two Saccharomyces spp. and sequence comparison among the three species defined evolutionarily conserved elements. Deletion analysis demonstrated that the early meiotic gene regulatory element URS1 was necessary but not sufficient for proper regulation of REC102. Upstream elements, including the binding sites for Gcr1p, Yap1p, Rap1p and several novel conserved sequences, are also required for the normal regulation of REC102 as well as a Rap1p binding site located in the coding region. The data in this paper support the use of phylogenetic comparisions as a method for determining important sequences in complex promoters.


Asunto(s)
Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Meiosis/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Recombinasas , Recombinación Genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/clasificación , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA