Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37467750

RESUMEN

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Charcot-Marie-Tooth/genética , ARN Helicasas DEAD-box/genética , Diclorodifenil Dicloroetileno , ADN Helicasas , Mamíferos , Proteínas de Neoplasias/genética
2.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153174

RESUMEN

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Programas Informáticos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Homocigoto , Enfermedades Raras/genética
3.
Am J Hum Genet ; 109(12): 2270-2282, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368327

RESUMEN

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Femenino , Humanos , Masculino , Trastorno Autístico/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Hipotonía Muscular/genética , Hipotonía Muscular/complicaciones , Fenotipo , Síndrome , Factores de Transcripción/genética
4.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948005

RESUMEN

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética Inversa
5.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35234901

RESUMEN

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Asunto(s)
Enfermedades Cerebelosas , Proteínas de Drosophila , Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Enfermedades Neurodegenerativas , Trastornos del Neurodesarrollo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Enfermedades Cerebelosas/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Neuroglía , Proteínas Represoras
6.
Am J Hum Genet ; 108(10): 1981-2005, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582790

RESUMEN

Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.


Asunto(s)
Genómica/métodos , Mutación , Trastornos del Neurodesarrollo/epidemiología , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Prevalencia , Turquía/epidemiología , Secuenciación del Exoma , Adulto Joven
7.
Ann Neurol ; 92(2): 304-321, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35471564

RESUMEN

OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.


Asunto(s)
Apirasa , Discapacidad Intelectual , Paraplejía Espástica Hereditaria , Sustancia Blanca , Apirasa/genética , Disartria , Humanos , Discapacidad Intelectual/genética , Mutación/genética , Paraplejía/genética , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/genética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
8.
Am J Med Genet A ; 191(3): 794-804, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36598158

RESUMEN

Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.


Asunto(s)
Microcefalia , Recién Nacido , Humanos , Microcefalia/genética , Codón de Terminación , Irán , Proteínas Asociadas a Microtúbulos/genética , Mutación del Sistema de Lectura/genética , Linaje
9.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711075

RESUMEN

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Trastornos Congénitos de Glicosilación , Humanos , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Fibroblastos/metabolismo , Trastornos Congénitos de Glicosilación/genética , Fenotipo
10.
Brain ; 145(3): 909-924, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34605855

RESUMEN

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Asunto(s)
Epilepsia Generalizada , Intercambiador de Sodio-Calcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrógeno/metabolismo , Intercambiador de Sodio-Calcio/genética
11.
Am J Hum Genet ; 105(5): 1005-1015, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630790

RESUMEN

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.


Asunto(s)
Variación Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimiento Celular/genética , Niño , Exoma/genética , Femenino , Homocigoto , Humanos , Masculino , Microtúbulos/genética , Malformaciones del Sistema Nervioso/genética , Neuronas/metabolismo , Fenotipo , Tubulina (Proteína)/genética
12.
Am J Hum Genet ; 105(1): 132-150, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31230720

RESUMEN

Arthrogryposis is a clinical finding that is present either as a feature of a neuromuscular condition or as part of a systemic disease in over 400 Mendelian conditions. The underlying molecular etiology remains largely unknown because of genetic and phenotypic heterogeneity. We applied exome sequencing (ES) in a cohort of 89 families with the clinical sign of arthrogryposis. Additional molecular techniques including array comparative genomic hybridization (aCGH) and Droplet Digital PCR (ddPCR) were performed on individuals who were found to have pathogenic copy number variants (CNVs) and mosaicism, respectively. A molecular diagnosis was established in 65.2% (58/89) of families. Eleven out of 58 families (19.0%) showed evidence for potential involvement of pathogenic variation at more than one locus, probably driven by absence of heterozygosity (AOH) burden due to identity-by-descent (IBD). RYR3, MYOM2, ERGIC1, SPTBN4, and ABCA7 represent genes, identified in two or more families, for which mutations are probably causative for arthrogryposis. We also provide evidence for the involvement of CNVs in the etiology of arthrogryposis and for the idea that both mono-allelic and bi-allelic variants in the same gene cause either similar or distinct syndromes. We were able to identify the molecular etiology in nine out of 20 families who underwent reanalysis. In summary, our data from family-based ES further delineate the molecular etiology of arthrogryposis, yielded several candidate disease-associated genes, and provide evidence for mutational burden in a biological pathway or network. Our study also highlights the importance of reanalysis of individuals with unsolved diagnoses in conjunction with sequencing extended family members.


Asunto(s)
Artrogriposis/genética , Artrogriposis/patología , Variaciones en el Número de Copia de ADN , Marcadores Genéticos , Genómica/métodos , Herencia Multifactorial/genética , Mutación , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Conectina/genética , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Mosaicismo , Linaje , Canal Liberador de Calcio Receptor de Rianodina/genética , Proteínas de Transporte Vesicular/genética , Secuenciación del Exoma , Adulto Joven
13.
Am J Med Genet A ; 188(3): 735-750, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34816580

RESUMEN

Genomic sequencing and clinical genomics have demonstrated that substantial subsets of atypical and/or severe disease presentations result from multilocus pathogenic variation (MPV) causing blended phenotypes. In an infant with a severe neurodevelopmental disorder, four distinct molecular diagnoses were found by exome sequencing (ES). The blended phenotype that includes brain malformation, dysmorphism, and hypotonia was dissected using the Human Phenotype Ontology (HPO). ES revealed variants in CAPN3 (c.259C > G:p.L87V), MUSK (c.1781C > T:p.A594V), NAV2 (c.1996G > A:p.G666R), and ZC4H2 (c.595A > C:p.N199H). CAPN3, MUSK, and ZC4H2 are established disease genes linked to limb-girdle muscular dystrophy (OMIM# 253600), congenital myasthenia (OMIM# 616325), and Wieacker-Wolff syndrome (WWS; OMIM# 314580), respectively. NAV2 is a retinoic-acid responsive novel disease gene candidate with biological roles in neurite outgrowth and cerebellar dysgenesis in mouse models. Using semantic similarity, we show that no gene identified by ES individually explains the proband phenotype, but rather the totality of the clinically observed disease is explained by the combination of disease-contributing effects of the identified genes. These data reveal that multilocus pathogenic variation can result in a blended phenotype with each gene affecting a different part of the nervous system and nervous system-muscle connection. We provide evidence from this n = 1 study that in patients with MPV and complex blended phenotypes resulting from multiple molecular diagnoses, quantitative HPO analysis can allow for dissection of phenotypic contribution of both established disease genes and novel disease gene candidates not yet proven to cause human disease.


Asunto(s)
Distrofia Muscular de Cinturas , Trastornos del Neurodesarrollo , Animales , Calpaína/genética , Egipto , Humanos , Lactante , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Secuenciación del Exoma
14.
Am J Med Genet A ; 188(7): 2153-2161, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332675

RESUMEN

Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Osteomielitis , Insuficiencia Renal , Alelos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Osteomielitis/genética , Linaje
15.
Am J Hum Genet ; 103(2): 171-187, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30032986

RESUMEN

Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, which was further used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be overlooked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and efficient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.


Asunto(s)
Mutación con Ganancia de Función/genética , Mutación/genética , Alelos , Codón sin Sentido/genética , Bases de Datos Genéticas , Exoma/genética , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/genética , Fenotipo
16.
Genet Med ; 23(12): 2455-2460, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385670

RESUMEN

PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.


Asunto(s)
Parálisis Cerebral , Epilepsia , Microcefalia , Trastornos del Neurodesarrollo , Proteínas Nucleares/genética , Parálisis Cerebral/genética , Epilepsia/genética , Humanos , Microcefalia/genética , Microcefalia/patología , Trastornos del Neurodesarrollo/genética , Linaje , Empalme del ARN
17.
Genet Med ; 23(9): 1715-1725, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34054129

RESUMEN

PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.


Asunto(s)
Anomalías del Ojo , Trastornos del Neurodesarrollo , Animales , Anomalías del Ojo/genética , Estudios de Asociación Genética , Humanos , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Receptores de Superficie Celular , Pez Cebra/genética
18.
Am J Med Genet A ; 185(7): 1972-1980, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33797191

RESUMEN

Biallelic loss-of-function (LoF) of SLC13A5 (solute carrier family 13, member 5) induced deficiency in sodium/citrate transporter (NaCT) causes autosomal recessive developmental epileptic encephalopathy 25 with hypoplastic amelogenesis imperfecta (DEE25; MIM #615905). Many pathogenic SLC13A5 single nucleotide variants (SNVs) and small indels have been described; however, no cases with copy number variants (CNVs) have been sufficiently investigated. We describe a consanguineous Iraqi family harboring an 88.5 kb homozygous deletion including SLC13A5 in Chr17p13.1. The three affected male siblings exhibit neonatal-onset epilepsy with fever-sensitivity, recurrent status epilepticus, global developmental delay/intellectual disability (GDD/ID), and other variable neurological findings as shared phenotypical features of DEE25. Two of the three affected subjects exhibit hypoplastic amelogenesis imperfecta (AI), while the proband shows no evidence of dental abnormalities or AI at 2 years of age with apparently unaffected primary dentition. Characterization of the genomic architecture at this locus revealed evidence for genomic instability generated by an Alu/Alu-mediated rearrangement; confirmed by break-point junction Sanger sequencing. This multiplex family from a distinct population elucidates the phenotypic consequence of complete LoF of SLC13A5 and illustrates the importance of read-depth-based CNV detection in comprehensive exome sequencing analysis to solve cases that otherwise remain molecularly unsolved.


Asunto(s)
Elementos Alu/genética , Epilepsia Generalizada/genética , Discapacidad Intelectual/genética , Simportadores/genética , Preescolar , Cromosomas Humanos Par 17/genética , Variaciones en el Número de Copia de ADN/genética , Epilepsia Generalizada/patología , Femenino , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Mutación/genética , Linaje , Eliminación de Secuencia/genética , Secuenciación del Exoma
19.
Am J Med Genet A ; 185(8): 2532-2540, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089229

RESUMEN

The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.


Asunto(s)
Antígenos de Neoplasias/genética , Muerte Súbita Cardíaca/etiología , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Proteínas de Unión al ARN/genética , Bloqueo Atrioventricular/diagnóstico , Bloqueo Atrioventricular/genética , Niño , Ecocardiografía , Electrocardiografía , Facies , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN , Adulto Joven
20.
Am J Med Genet A ; 185(4): 1288-1293, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33544954

RESUMEN

Alkylated DNA repair protein AlkB homolog 8 (ALKBH8) is a member of the AlkB family of dioxygenases. ALKBH8 is a methyltransferase of the highly variable wobble nucleoside position in the anticodon loop of tRNA and thus plays a critical role in tRNA modification by preserving codon recognition and preventing errors in amino acid incorporation during translation. Moreover, its activity catalyzes uridine modifications that are proposed to be critical for accurate protein translation. Previously, two distinct homozygous truncating variants in the final exon of ALKBH8 were described in two unrelated large Saudi Arabian kindreds with intellectual developmental disorder and autosomal recessive 71 (MRT71) syndrome (MIM# 618504). Here, we report a third family-of Egyptian descent-harboring a novel homozygous frame-shift variant in the last exon of ALKBH8. Two affected siblings in this family exhibit global developmental delay and intellectual disability as shared characteristic features of MRT71 syndrome, and we further characterize their observed dysmorphic features and brain MRI findings. This description of a third family with a truncating ALKBH8 variant from a distinct population broadens the phenotypic and genotypic spectrum of MRT71 syndrome, affirms that perturbations in tRNA biogenesis can contribute to neurogenetic disease traits, and firmly establishes ALKBH8 as a novel neurodevelopmental disease gene.


Asunto(s)
Homólogo 8 de AlkB ARNt Metiltransferasa/genética , Encéfalo/diagnóstico por imagen , Predisposición Genética a la Enfermedad , Trastornos del Neurodesarrollo/genética , Adolescente , Encéfalo/patología , Niño , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/patología , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA