Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35038583

RESUMEN

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Dopamina , Neuronas Dopaminérgicas/metabolismo , Silenciador del Gen , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Fenotipo , Sustancia Negra/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686236

RESUMEN

Parkinson's disease (PD) pathology is characterized by the loss of dopaminergic neurons of the nigrostriatal system and accumulation of Lewy bodies (LB) and Lewy neurites (LN), inclusions mainly composed of alpha-synuclein (α-Syn) fibrils. Studies linking the occurrence of mutations and multiplications of the α-Syn gene (SNCA) to the onset of PD support that α-Syn deposition may play a causal role in the disease, in line with the hypothesis that disease progression may correlate with the spreading of LB pathology in the brain. Interestingly, LB accumulate posttranslationally modified forms of α-Syn, suggesting that α-Syn posttranslational modifications impinge on α-Syn aggregation and/or toxicity. Here, we aimed at investigating changes in α-Syn phosphorylation, nitration and acetylation in mice subjected to nigral stereotaxic injections of adeno-associated viral vectors inducing overexpression of human α-Syn (AAV-hα-Syn), that model genetic PD with SNCA multiplications. We detected a mild increase of serine (Ser) 129 phosphorylated α-Syn in the substantia nigra (SN) of AAV-hα-Syn-injected mice in spite of the previously described marked accumulation of this PTM in the striatum. Following AAV-hα-Syn injection, tyrosine (Tyr) 125/136 nitrated α-Syn accumulation in the absence of general 3-nitrotirosine (3NT) or nitrated-Tyr39 α-Syn changes and augmented protein acetylation abundantly overlapping with α-Syn immunopositivity were also detected.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/genética , Modelos Animales de Enfermedad , Cuerpos de Lewy , Enfermedad de Parkinson/genética , Fosforilación , Procesamiento Proteico-Postraduccional
3.
J Neuroinflammation ; 19(1): 50, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172843

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1ß (IL-1ß), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS: Biochemical techniques including quantification of IL-1ß secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS: We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1ß secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS: Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.


Asunto(s)
Inflamasomas , Enfermedad de Parkinson , Animales , Dopamina/metabolismo , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Parkinson/patología
4.
Mov Disord ; 37(5): 949-961, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35420219

RESUMEN

BACKGROUND: The neuronal protein alpha-synuclein (α-Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α-Syn. Both proteins act as molecular chaperones and control synaptic machinery. Despite such evidence, the role of α-Syn in dystonia has never been investigated. OBJECTIVE: We explored whether α-Syn and N-ethylmaleimide sensitive fusion attachment protein receptor proteins (SNAREs), that are known to be modulated by α-Syn, may be involved in DYT1 dystonia synaptic dysfunction. METHODS: We used electrophysiological and biochemical techniques to study synaptic alterations in the dorsal striatum of the Tor1a+ /Δgag mouse model of DYT1 dystonia. RESULTS: In the Tor1a+/Δgag DYT1 mutant mice, we found a significant reduction of α-Syn levels in whole striata, mainly involving glutamatergic corticostriatal terminals. Strikingly, the striatal levels of the vesicular SNARE VAMP-2, a direct α-Syn interactor, and of the transmembrane SNARE synaptosome-associated protein 23 (SNAP-23), that promotes glutamate synaptic vesicles release, were markedly decreased in mutant mice. Moreover, we detected an impairment of miniature glutamatergic postsynaptic currents (mEPSCs) recorded from striatal spiny neurons, in parallel with a decreased asynchronous release obtained by measuring quantal EPSCs (qEPSCs), which highlight a robust alteration in release probability. Finally, we also observed a significant reduction of TA striatal expression in α-Syn null mice. CONCLUSIONS: Our data demonstrate an unprecedented relationship between TA and α-Syn, and reveal that α-Syn and SNAREs alterations characterize the synaptic dysfunction underlying DYT1 dystonia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Asunto(s)
Distonía Muscular Deformante , Distonía , Trastornos Distónicos , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Distonía Muscular Deformante/metabolismo , Humanos , Ratones , Ratones Transgénicos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , alfa-Sinucleína/genética
5.
Glia ; 69(3): 681-696, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33045109

RESUMEN

The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Astrocitos , Clusterina/genética , Humanos , Cuerpos de Lewy , Ratones , alfa-Sinucleína/genética
6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502063

RESUMEN

α-synuclein is a small protein that is mainly expressed in the synaptic terminals of nervous tissue. Although its implication in neurodegeneration is well established, the physiological role of α-synuclein remains elusive. Given its involvement in the modulation of synaptic transmission and the emerging role of microtubules at the synapse, the current study aimed at investigating whether α-synuclein becomes involved with this cytoskeletal component at the presynapse. We first analyzed the expression of α-synuclein and its colocalization with α-tubulin in murine brain. Differences were found between cortical and striatal/midbrain areas, with substantia nigra pars compacta and corpus striatum showing the lowest levels of colocalization. Using a proximity ligation assay, we revealed the direct interaction of α-synuclein with α-tubulin in murine and in human brain. Finally, the previously unexplored interaction of the two proteins in vivo at the synapse was disclosed in murine striatal presynaptic boutons through multiple approaches, from confocal spinning disk to electron microscopy. Collectively, our data strongly suggest that the association with tubulin/microtubules might actually be an important physiological function for α-synuclein in the synapse, thus suggesting its potential role in a neuropathological context.


Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Negra/metabolismo , Sinapsis/metabolismo , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Cuerpo Estriado/ultraestructura , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Persona de Mediana Edad , Sustancia Negra/ultraestructura , Sinapsis/ultraestructura
7.
Neurobiol Dis ; 138: 104789, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032728

RESUMEN

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Asunto(s)
Metilfenidato/metabolismo , Sinapsinas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trastornos Neurológicos de la Marcha/metabolismo , Cuerpos de Lewy/metabolismo , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías
8.
IUBMB Life ; 72(4): 590-600, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31693290

RESUMEN

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of either neuronal/axonal or glial insoluble proteinaceous aggregates mainly composed of α-synuclein (α-syn). Among them, the most common disorders are Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and some forms of familial parkinsonism. Both α-syn fibrils and oligomers have been found to exert toxic effects on neurons or oligodendroglial cells, can activate neuroinflammatory responses, and mediate the spreading of α-syn pathology. This poses the question of which is the most toxic α-syn species. What is worst, α-syn appears as a very peculiar protein, exerting multiple physiological functions in neurons, especially at synapses, but without acquiring a stable tertiary structure. Its conformation is particularly plastic, and the protein can exist in a natively unfolded state (mainly in solution), partially α-helical folded state (when it interacts with biological membranes), or oligomeric state (tetramers or dimers with debated functional profile). The extent of α-syn expression impinges on the resilience of neuronal cells, as multiplications of its gene locus, or overexpression, can cause neurodegeneration and onset of motor phenotype. For these reasons, one of the main challenges in the field of synucleinopathies, which still nowadays can only be managed by symptomatic therapies, has been the development of strategies aimed at reducing α-syn levels, oligomer formation, fibrillation, or cell-to-cell transmission. This review resumes the therapeutic approaches that have been proposed or are under development to counteract α-syn pathology by direct targeting of this protein and discuss their pros and cons in relation to the current state-of-the-art α-syn biology.


Asunto(s)
Terapia Molecular Dirigida/métodos , alfa-Sinucleína/fisiología , Animales , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Atrofia de Múltiples Sistemas/terapia , Enfermedad de Parkinson/terapia , Sinapsis/fisiología , alfa-Sinucleína/genética
9.
Int J Mol Sci ; 20(1)2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609739

RESUMEN

Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein⁻protein and protein⁻lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.


Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , Sinapsis/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Neurotransmisores/metabolismo , Unión Proteica , alfa-Sinucleína/química
10.
Acta Neuropathol ; 136(4): 621-639, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30046897

RESUMEN

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of nigral dopamine neurons. The deposition of fibrillary aggregated α-synuclein in Lewy bodies (LB), that is considered to play a causative role in the disease, constitutes another key neuropathological hallmark of PD. We have recently described that synapsin III (Syn III), a synaptic phosphoprotein that regulates dopamine release in cooperation with α-synuclein, is present in the α-synuclein insoluble fibrils composing the LB of patients affected by PD. Moreover, we observed that silencing of Syn III gene could prevent α-synuclein fibrillary aggregation in vitro. This evidence suggests that Syn III might be crucially involved in α-synuclein pathological deposition. To test this hypothesis, we studied whether mice knock-out (ko) for Syn III might be protected from α-synuclein aggregation and nigrostriatal neuron degeneration resulting from the unilateral injection of adeno-associated viral vectors (AAV)-mediating human wild-type (wt) α-synuclein overexpression (AAV-hαsyn). We found that Syn III ko mice injected with AAV-hαsyn did not develop fibrillary insoluble α-synuclein aggregates, showed reduced amount of α-synuclein oligomers detected by in situ proximity ligation assay (PLA) and lower levels of Ser129-phosphorylated α-synuclein. Moreover, the nigrostriatal neurons of Syn III ko mice were protected from both synaptic damage and degeneration triggered by the AAV-hαsyn injection. Our observations indicate that Syn III constitutes a crucial mediator of α-synuclein aggregation and toxicity and identify Syn III as a novel therapeutic target for PD.


Asunto(s)
Neostriado/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Sinapsis/patología , Sinapsinas/deficiencia , alfa-Sinucleína/metabolismo , Anfetamina/farmacología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Dependovirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/patología , Conducta Estereotipada/efectos de los fármacos , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
Int J Mol Sci ; 19(6)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848975

RESUMEN

Parkinson's disease (PD) is characterized by the degeneration of the dopaminergic nigrostriatal neurons and the presence of Lewy bodies (LB) and Lewy neurites (LN) mainly composed of α-synuclein. By using the in situ proximity ligation assay (PLA), which allows for the visualization of protein-protein interactions in tissues to detect dopamine transporter (DAT)/α-synuclein complexes, we previously described that these are markedly redistributed in the striatum of human α-synuclein transgenic mice at the phenotypic stage, showing dopamine (DA) release impairment without a DAT drop and motor symptoms. Here, we used the in situ PLA to investigate DAT/α-synuclein complexes in the caudate putamen of PD patients and age-matched controls. They were found to be redistributed and showed an increased size in PD patients, where we observed several neuropil-like and neuritic-like PLA-positive structures. In the PD brains, DAT immunolabeling showed a pattern similar to that of in situ PLA in areas with abundant α-synuclein neuropathology. This notwithstanding, the in situ PLA signal was only partially retracing DAT or α-synuclein immunolabeling, suggesting that a large amount of complexes may have been lost along with the degeneration process. These findings reveal a DAT/α-synuclein neuropathological signature in PD and hint that synaptic alterations involving striatal DAT may derive from α-synuclein aggregation.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Inmunohistoquímica , Técnicas In Vitro , Masculino , Ratones Transgénicos
12.
J Pharmacol Exp Ther ; 363(2): 164-175, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28899992

RESUMEN

Loss-of-function mutations in the progranulin (PGRN) gene are a common cause of familial frontotemporal lobar degeneration (FTLD). This age-related neurodegenerative disorder, characterized by brain atrophy in the frontal and temporal lobes and such typical symptoms as cognitive and memory impairment, profound behavioral abnormalities, and personality changes is thought to be related to connectome dysfunctions. Recently, PGRN reduction has been found to induce a behavioral phenotype reminiscent of FTLD symptoms in mice by affecting neuron spine density and morphology, suggesting that the protein can influence neuronal structural plasticity. Here, we evaluated whether a partial haploinsufficiency-like PGRN depletion, achieved by using RNA interference in primary mouse cortical neurons, could modulate GluN2B-containing N-methyl-d-aspartate (NMDA) receptors and tau phosphorylation, which are crucially involved in the regulation of the structural plasticity of these cells. In addition, we studied the effect of PGRN decrease on neuronal cell arborization both in the presence and absence of GluN2B-containing NMDA receptor stimulation. We found that PGRN decline diminished GluN2B-containing NMDA receptor levels and density as well as NMDA-dependent tau phosphorylation. These alterations were accompanied by a marked drop in neuronal arborization that was prevented by an acute GluN2B-containing NMDA receptor stimulation. Our findings support that PGRN decrease, resulting from pathogenic mutations, might compromise the trophism of cortical neurons by affecting GluN2B-contaning NMDA receptors. These mechanisms might be implicated in the pathogenesis of FTLD.


Asunto(s)
Corteza Cerebral/citología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Plasticidad Neuronal , Neuronas/metabolismo , Interferencia de ARN , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo , Envejecimiento , Animales , Secuencia de Bases , Supervivencia Celular , Regulación de la Expresión Génica , Glicosilación , Granulinas , Hipocampo/citología , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Neuronas/citología , Fosforilación , Progranulinas
13.
Neural Plast ; 2017: 5012129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133550

RESUMEN

Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel "prion-like" behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Sinapsis/metabolismo , Sinapsis/patología , alfa-Sinucleína/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/fisiopatología , Sinapsis/fisiología
14.
Neuropathol Appl Neurobiol ; 42(1): 77-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26613567

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder with prominent loss of nigro-striatal dopaminergic neurons. The resultant dopamine (DA) deficiency underlies the onset of typical motor symptoms (MS). Nonetheless, individuals affected by PD usually show a plethora of nonmotor symptoms (NMS), part of which may precede the onset of motor signs. Besides DA neuron degeneration, a key neuropathological alteration in the PD brain is Lewy pathology. This is characterized by abnormal intraneuronal (Lewy bodies) and intraneuritic (Lewy neurites) deposits of fibrillary aggregates mainly composed of α-synuclein. Lewy pathology has been hypothesized to progress in a stereotypical pattern over the course of PD and α-synuclein mutations and multiplications have been found to cause monogenic forms of the disease, thus raising the question as to whether this protein is pathogenic in this disorder. Findings showing that the majority of α-synuclein aggregates in PD are located at presynapses and this underlies the onset of synaptic and axonal degeneration, coupled to the fact that functional connectivity changes correlate with disease progression, strengthen this idea. Indeed, by altering the proper action of key molecules involved in the control of neurotransmitter release and re-cycling as well as synaptic and structural plasticity, α-synuclein deposition may crucially impair axonal trafficking, resulting in a series of noxious events, whose pressure may inevitably degenerate into neuronal damage and death. Here, we provide a timely overview of the molecular features of synaptic loss in PD and disclose their possible translation into clinical symptoms through functional disconnection.


Asunto(s)
Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Sinapsis/patología , Conectoma , Progresión de la Enfermedad , Humanos
15.
Front Mol Neurosci ; 16: 1197853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305556

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.

16.
NPJ Parkinsons Dis ; 9(1): 42, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966140

RESUMEN

Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.

17.
Cells ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497160

RESUMEN

Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD.


Asunto(s)
Neuronas Dopaminérgicas , Sinapsinas , Animales , Humanos , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Dopamina , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metilfenidato/uso terapéutico , Ratones Noqueados , Sinapsinas/genética , Sinapsinas/metabolismo , Pez Cebra/metabolismo
18.
Pharmaceutics ; 14(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36015221

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy.

19.
Neurosci Biobehav Rev ; 130: 33-60, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34407457

RESUMEN

Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.


Asunto(s)
Trastornos Mentales , Sinapsinas , Humanos , Neuronas , Transmisión Sináptica , Vesículas Sinápticas
20.
Front Immunol ; 12: 611761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679750

RESUMEN

Misfolded proteins, inflammation, and vascular alterations are common pathological hallmarks of neurodegenerative diseases. Alpha-synuclein is a small synaptic protein that was identified as a major component of Lewy bodies and Lewy neurites in the brain of patients affected by Parkinson's disease (PD), Lewy body dementia (LBD), and other synucleinopathies. It is mainly involved in the regulation of synaptic vesicle trafficking but can also control mitochondrial/endoplasmic reticulum (ER) homeostasis, lysosome/phagosome function, and cytoskeleton organization. Recent evidence supports that the pathological forms of α-synuclein can also reduce the release of vasoactive and inflammatory mediators from endothelial cells (ECs) and modulates the expression of tight junction (TJ) proteins important for maintaining the blood-brain barrier (BBB). This hints that α-synuclein deposition can affect BBB integrity. Border associated macrophages (BAMs) are brain resident macrophages found in association with the vasculature (PVMs), meninges (MAMs), and choroid plexus (CPMs). Recent findings indicate that these cells play distinct roles in stroke and neurodegenerative disorders. Although many studies have addressed how α-synuclein may modulate microglia, its effect on BAMs has been scarcely investigated. This review aims at summarizing the main findings supporting how α-synuclein can affect ECs and/or BAMs function as well as their interplay and effect on other cells in the brain perivascular environment in physiological and pathological conditions. Gaps of knowledge and new perspectives on how this protein can contribute to neurodegeneration by inducing BBB homeostatic changes in different neurological conditions are highlighted.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , alfa-Sinucleína/metabolismo , Animales , Biomarcadores , Encéfalo/patología , Comunicación Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Microglía/inmunología , Microglía/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA