Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(11): e1010367, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327219

RESUMEN

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host Genetics Initiative genome-wide association study used common variants to identify multiple loci associated with COVID-19 outcomes. However, variants with the largest impact on COVID-19 outcomes are expected to be rare in the population. Hence, studying rare variants may provide additional insights into disease susceptibility and pathogenesis, thereby informing therapeutics development. Here, we combined whole-exome and whole-genome sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and 571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2 sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase in severe disease (95% CI: 2.75-10.05, p = 5.41x10-7). This association was consistent across sexes. These results further support TLR7 as a genetic determinant of severe disease and suggest that larger studies on rare variants influencing COVID-19 outcomes could provide additional insights.


Asunto(s)
COVID-19 , Exoma , Humanos , Exoma/genética , Estudio de Asociación del Genoma Completo , COVID-19/genética , Predisposición Genética a la Enfermedad , Receptor Toll-Like 7/genética , SARS-CoV-2/genética
2.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861666

RESUMEN

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Enanismo , Discapacidad Intelectual , Anomalías Dentarias , Embarazo , Femenino , Humanos , Facies , Anomalías Dentarias/genética , Enfermedades del Desarrollo Óseo/genética , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Hibridación Genómica Comparativa , Proteínas Represoras/genética , Fenotipo , Enanismo/genética , Pueblo Europeo
3.
Genes Immun ; 23(1): 51-56, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952932

RESUMEN

Toll-like receptors (TLR) are crucial components in the initiation of innate immune responses to a variety of pathogens, triggering the production of pro-inflammatory cytokines and type I and II interferons, which are responsible for innate antiviral responses. Among the different TLRs, TLR7 recognizes several single-stranded RNA viruses including SARS-CoV-2. We and others identified rare loss-of-function variants in X-chromosomal TLR7 in young men with severe COVID-19 and with no prior history of major chronic diseases, that were associated with impaired TLR7 signaling as well as type I and II IFN responses. Here, we performed RNA sequencing to investigate transcriptome variations following imiquimod stimulation of peripheral blood mononuclear cells isolated from patients carrying previously identified hypomorphic, hypofunctional, and loss-of-function TLR7 variants. Our investigation revealed a profound impairment of the TLR7 pathway in patients carrying loss-of-function variants. Of note, a failure in IFNγ upregulation following stimulation was also observed in cells harboring the hypofunctional and hypomorphic variants. We also identified new TLR7 variants in severely affected male patients for which a functional characterization of the TLR7 pathway was performed demonstrating a decrease in mRNA levels in the IFNα, IFNγ, RSAD2, ACOD1, IFIT2, and CXCL10 genes.


Asunto(s)
COVID-19 , Receptor Toll-Like 7 , Citocinas/metabolismo , Regulación hacia Abajo , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , SARS-CoV-2 , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/metabolismo
4.
Hum Genet ; 141(1): 147-173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889978

RESUMEN

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.


Asunto(s)
COVID-19/genética , COVID-19/fisiopatología , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Fenotipo , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Alemania , Humanos , Italia , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Quebec , SARS-CoV-2 , Suecia , Reino Unido
5.
Gastroenterology ; 160(1): 158-173.e10, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860791

RESUMEN

BACKGROUND & AIMS: We evaluated the efficacy and safety of diet-modulated autologous fecal microbiota transplantation (aFMT) for treatment of weight regain after the weight-loss phase. METHODS: In the DIRECT PLUS (Dietary Intervention Randomized Controlled Trial Polyphenols-Unprocessed) weight-loss trial (May 2017 through July 2018), abdominally obese or dyslipidemic participants in Israel were randomly assigned to healthy dietary guidelines, Mediterranean diet, and green-Mediterranean diet weight-loss groups. All groups received free gym membership and physical activity guidelines. Both isocaloric Mediterranean groups consumed 28 g/d walnuts (+440 mg/d polyphenols provided). The green-Mediterranean dieters also consumed green tea (3-4 cups/d) and a Wolffia globosa (Mankai strain, 100 g/d) green shake (+800 mg/d polyphenols provided). After 6 months (weight-loss phase), 90 eligible participants (mean age, 52 years; mean weight loss, 8.3 kg) provided a fecal sample that was processed into aFMT by frozen, opaque, and odorless capsules. The participants were then randomly assigned to groups that received 100 capsules containing their own fecal microbiota or placebo until month 14. The primary outcome was regain of the lost weight over the expected weight-regain phase (months 6-14). Secondary outcomes were gastrointestinal symptoms, waist circumference, glycemic status, and changes in the gut microbiome, as measured by metagenomic sequencing and 16s ribosomal RNA. We validated the results in a parallel in vivo study of mice specifically fed with Mankai compared with control chow diet. RESULTS: Of the 90 participants in the aFMT trial, 96% ingested at least 80 of 100 oral aFMT or placebo frozen capsules during the transplantation period. No aFMT-related adverse events or symptoms were observed. For the primary outcome, although no significant differences in weight regain were observed among the participants in the different lifestyle interventions during months 6-14 (aFMT, 30.4% vs placebo, 40.6%; P = .28), aFMT significantly attenuated weight regain in the green-Mediterranean group (aFMT, 17.1%, vs placebo, 50%; P = .02), but not in the dietary guidelines (P = .57) or Mediterranean diet (P = .64) groups (P for the interaction = .03). Accordingly, aFMT attenuated waist circumference gain (aFMT, 1.89 cm vs placebo, 5.05 cm; P = .01) and insulin rebound (aFMT, -1.46 ± 3.6 µIU/mL vs placebo, 1.64 ± 4.7 µIU/mL; P = .04) in the green-Mediterranean group but not in the dietary guidelines or Mediterranean diet (P for the interaction = .04 and .03, respectively). The green-Mediterranean diet was the only intervention to induce a significant change in microbiome composition during the weight-loss phase, and to prompt preservation of weight-loss-associated specific bacteria and microbial metabolic pathways (mainly microbial sugar transport) after the aFMT. In mice, Mankai-modulated aFMT in the weight-loss phase compared with control diet aFMT, significantly prevented weight regain and resulted in better glucose tolerance during a high-fat diet-induced regain phase (all, P < .05). CONCLUSIONS: Autologous FMT, collected during the weight-loss phase and administrated in the regain phase, might preserve weight loss and glycemic control, and is associated with specific microbiome signatures. A high-polyphenols, green plant-based or Mankai diet better optimizes the microbiome for an aFMT procedure. ClinicalTrials.gov number, NCT03020186.


Asunto(s)
Trasplante de Microbiota Fecal , Obesidad/dietoterapia , Aumento de Peso , Adulto , Animales , Dieta Mediterránea , Modelos Animales de Enfermedad , Ejercicio Físico , Femenino , Humanos , Israel , Estilo de Vida , Masculino , Ratones , Persona de Mediana Edad , Circunferencia de la Cintura , Pérdida de Peso
6.
Eur J Nutr ; 61(5): 2651-2671, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35247098

RESUMEN

PURPOSE: Aleurone is a cereal bran fraction containing a variety of beneficial nutrients including polyphenols, fibers, minerals and vitamins. Animal and human studies support the beneficial role of aleurone consumption in reducing cardiovascular disease (CVD) risk. Gut microbiota fiber fermentation, polyphenol metabolism and betaine/choline metabolism may in part contribute to the physiological effects of aleurone. As primary objective, this study evaluated whether wheat aleurone supplemented foods could modify plasma homocysteine. Secondary objectives included changes in CVD biomarkers, fecal microbiota composition and plasma/urine metabolite profiles. METHODS: A parallel double-blind, placebo-controlled and randomized trial was carried out in two groups of obese/overweight subjects, matched for age, BMI and gender, consuming foods supplemented with either aleurone (27 g/day) (AL, n = 34) or cellulose (placebo treatment, PL, n = 33) for 4 weeks. RESULTS: No significant changes in plasma homocysteine or other clinical markers were observed with either treatment. Dietary fiber intake increased after AL and PL, animal protein intake increased after PL treatment. We observed a significant increase in fecal Bifidobacterium spp with AL and Lactobacillus spp with both AL and PL, but overall fecal microbiota community structure changed little according to 16S rRNA metataxonomics. Metabolomics implicated microbial metabolism of aleurone polyphenols and revealed distinctive biomarkers of AL treatment, including alkylresorcinol, cinnamic, benzoic and ferulic acids, folic acid, fatty acids, benzoxazinoid and roasted aroma related metabolites. Correlation analysis highlighted bacterial genera potentially linked to urinary compounds derived from aleurone metabolism and clinical parameters. CONCLUSIONS: Aleurone has potential to modulate the gut microbial metabolic output and increase fecal bifidobacterial abundance. However, in this study, aleurone did not impact on plasma homocysteine or other CVD biomarkers. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov (NCT02067026) on the 17th February 2014.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Adulto , Animales , Biomarcadores , Índice de Masa Corporal , Enfermedades Cardiovasculares/prevención & control , Fibras de la Dieta , Método Doble Ciego , Heces/microbiología , Homocisteína , Humanos , Lactante , Proteínas de Plantas , Polifenoles/análisis , Polifenoles/farmacología , ARN Ribosómico 16S , Triticum/química
7.
Int J Mol Sci ; 22(13)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209673

RESUMEN

A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04-5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.


Asunto(s)
Proteína C9orf72/genética , COVID-19/patología , Repeticiones de Microsatélite , Adulto , Factores de Edad , Anciano , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , COVID-19/genética , COVID-19/virología , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad
8.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064267

RESUMEN

Sustainability of aquaculture is tied to the origin of feed ingredients. In search of sustainable fish meal-free formulations for rainbow trout, we evaluated the effect of Hermetia illucens meal (H) and poultry by-product meal (P), singly (10, 30, and 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers. Fish fed the mixture H10P50 had the best growth performance. H, P, and especially the combination H10P50 partially restored α-diversity that was negatively affected by VM. Diets did not differ in the Firmicutes:Proteobacteria ratio, although the relative abundance of Gammaproteobacteria was reduced in H and was higher in P and in the fishmeal control. H had higher relative abundance of chitin-degrading Actinomyces and Bacillus, Dorea, and Enterococcus. Actinomyces was also higher in H feed, suggesting feed-chain microbiome transmission. P increased the relative abundance of protein degraders Paeniclostridium and Bacteroidales. IL-1ß, IL-10, TGF-ß, COX-2, and TCR-ß gene expression in the midgut and head kidney and plasma lipopolysaccharide (LPS) revealed that the diets did not compromise the gut barrier function or induce inflammation. H, P, and H10P50 therefore appear valid protein sources in fishmeal-free aquafeeds.


Asunto(s)
Proteínas Dietéticas Animales/metabolismo , Biomarcadores/metabolismo , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiología , Alimentación Animal , Animales , Acuicultura/métodos , Dieta/métodos , Riñón Cefálico/metabolismo , Insectos/metabolismo , Aves de Corral/metabolismo , Productos Avícolas
9.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948243

RESUMEN

Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1-3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent-offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.


Asunto(s)
Trastorno Autístico/genética , Secuenciación del Exoma , Sitios Genéticos , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Adolescente , Trastorno Autístico/patología , Niño , Femenino , Humanos , Discapacidad Intelectual/patología , Masculino
10.
Curr Opin Clin Nutr Metab Care ; 23(6): 437-444, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32941185

RESUMEN

PURPOSE OF REVIEW: The spread of the Western lifestyle across the globe has led to a pandemic in obesity-related metabolic disease. The Mediterranean diet (MedDiet), Okinawa diet (OkD) and Nordic diet, derived from very different regions of the world and culinary traditions, have a large whole plant food component and are associated with reduced disease risk. This review focuses on polyphenol : microbiome interactions as one possible common mechanistic driver linking the protective effects whole plant foods against metabolic disease across healthy dietary patterns irrespective of geography. RECENT FINDINGS: Although mechanistic evidence in humans is still scarce, animal studies suggest that polyphenol or polyphenol rich foods induce changes within the gut microbiota and its metabolic output of trimethylamine N-oxide, short-chain fatty acids, bile acids and small phenolic acids. These cross-kingdom signaling molecules regulate mammalian lipid and glucose homeostasis, inflammation and energy storage or thermogenesis, physiological processes determining obesity-related metabolic and cardiovascular disease risk. However, it appears that where in the intestine metabolites are produced, the microbiota communities involved, and interactions between the metabolites themselves, can all influence physiological responses, highlighting the need for a greater understanding of the kinetics and site of production of microbial metabolites within the gut. SUMMARY: Interactions between polyphenols and metabolites produced by the gut microbiota are emerging as a possible unifying protective mechanism underpinning diverse healthy dietary patterns signaling across culinary traditions, across geography and across domains of life.


Asunto(s)
Dieta Saludable/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Obesidad/dietoterapia , Polifenoles/farmacología , Dieta Saludable/etnología , Geografía , Humanos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/microbiología , Obesidad/complicaciones , Obesidad/microbiología , Plantas Comestibles/química , Factores Protectores
11.
Eur J Nutr ; 59(8): 3691-3714, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32103319

RESUMEN

PURPOSE: Validated biomarkers of food intake (BFIs) have recently been suggested as a useful tool to assess adherence to dietary guidelines or compliance in human dietary interventions. Although many new candidate biomarkers have emerged in the last decades for different foods from metabolic profiling studies, the number of comprehensively validated biomarkers of food intake is limited. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fibers, an important mediator for their health-protective properties. METHODS: Using an untargeted metabolomics approach, we aimed to identify biomarkers of long-term apple intake and explore how apples impact on the human plasma and urine metabolite profiles. Forty mildly hypercholesterolemic volunteers consumed two whole apples or a sugar and energy-matched control beverage, daily for 8 weeks in a randomized, controlled, crossover intervention study. The metabolome in plasma and urine samples was analyzed via untargeted metabolomics. RESULTS: We found 61 urine and 9 plasma metabolites being statistically significant after the whole apple intake compared to the control beverage, including several polyphenol metabolites that could be used as BFIs. Furthermore, we identified several endogenous indole and phenylacetyl-glutamine microbial metabolites significantly increasing in urine after apple consumption. The multiomic dataset allowed exploration of the correlations between metabolites modulated significantly by the dietary intervention and fecal microbiota species at genus level, showing interesting interactions between Granulicatella genus and phenyl-acetic acid metabolites. Phloretin glucuronide and phloretin glucuronide sulfate appeared promising biomarkers of apple intake; however, robustness, reliability and stability data are needed for full BFI validation. CONCLUSION: The identified apple BFIs can be used in future studies to assess compliance and to explore their health effects after apple intake. Moreover, the identification of polyphenol microbial metabolites suggests that apple consumption mediates significant gut microbial metabolic activity which should be further explored.


Asunto(s)
Malus , Microbiota , Biomarcadores , Humanos , Polifenoles/análisis , Reproducibilidad de los Resultados , Triptófano , Tirosina
12.
Pediatr Dermatol ; 37(6): 1205-1206, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32892417

RESUMEN

We report on a 3-month-old female patient presenting with bilateral anonychia of the thumbnails and hyponychia of the index nails. Clinico-dermoscopic examination revealed triangular lunulae in all fingernails. Sequence analysis of LMX1B gene identified a novel heterozygous de novo mutation within exon 2, pathogenetic for a nail-patella syndrome.


Asunto(s)
Síndrome de la Uña-Rótula , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Proteínas con Homeodominio LIM/genética , Mutación , Síndrome de la Uña-Rótula/diagnóstico , Síndrome de la Uña-Rótula/genética , Factores de Transcripción/genética
13.
Cancer Cell Int ; 19: 274, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31673247

RESUMEN

BACKGROUND: Daily experience tells us that breast cancer can be controlled using standard protocols up to the advent of a relapse. Now new frontiers in precision medicine like liquid biopsy of cell free DNA (cfDNA) give us the possibility to understand cancer evolution and pick up the key mutation on specific cancer driver gene. However, tight schedule of standardized protocol may impair the use of personalized experimental drugs in a timely therapeutic window. MAIN BODY: Here, using a combination of deep next generation sequencing and cfDNA liquid biopsy, we demonstrated that it is possible to monitor cancer relapse over time. We showed for the first time the exact correspondence from the increasing clonal expansion and clinical worsening of metastatic breast cancer. CONCLUSION: Thanks to liquid biopsy may be possible to introduce new experimental drugs in the correct therapeutic window which would lead in the near future to an effective treatment which otherwise remains challenging.

14.
Eur J Nutr ; 58(1): 63-81, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29124388

RESUMEN

PURPOSE: Olive pomace is a major waste product of olive oil production but remains rich in polyphenols and fibres. We measured the potential of an olive pomace-enriched biscuit formulation delivering 17.1 ± 4.01 mg/100 g of hydroxytyrosol and its derivatives, to modulate the composition and metabolic activity of the human gut microbiota. METHODS: In a double-blind, controlled parallel dietary intervention 62 otherwise healthy hypercholesterolemic (total plasma cholesterol 180-240 mg/dl) subjects were randomly assigned to eat 90 g of olive pomace-enriched biscuit (olive-enriched product, OEP) or an isoenergetic control (CTRL) for 8 weeks. Fasted blood samples, 24-h urine and faecal samples were collected before and after dietary intervention for measurement of microbiota, metabolites and clinical parameters. RESULTS: Consumption of OEP biscuits did not impact on the diversity of the faecal microbiota and there was no statistically significant effect on CVD markers. A trend towards reduced oxidized LDL cholesterol following OEP ingestion was observed. At the genus level lactobacilli and Ruminococcus were reduced in OEP compared to CTRL biscuits. A trend towards increased bifidobacteria abundance was observed after OEP ingestion in 16S rRNA profiles, by fluorescent in situ hybridization and by qPCR. Targeted LC-MS revealed significant increases phenolic acid concentrations in 24-h urine following OEP ingestion and 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid, derivatives of hydroxytyrosol, were elevated in blood. A sex effect was apparent in urine small phenolic acid concentrations, and this sex effect was mirrored by statistically significant differences in relative abundances of faecal bacteria between men and women. CONCLUSION: Ingestion of OEP biscuits led to a significant increase in the metabolic output of the gut microbiota with an apparent sex effect possibly linked to differences in microbiota makeup. Increased levels of homovanillic acid and DOPAC, thought to be involved in reducing oxidative LDL cholesterol, were observed upon OEP ingestion. However, OEP did not induce statistically significant changes in either ox-LDL or urinary isoprostane in this study.


Asunto(s)
Pan , Microbioma Gastrointestinal/efectos de los fármacos , Hipercolesterolemia/metabolismo , Olea/metabolismo , Extractos Vegetales/farmacología , Adulto , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Extractos Vegetales/metabolismo , Factores Sexuales
15.
Gastroenterology ; 153(4): 936-947, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28625832

RESUMEN

BACKGROUND & AIMS: Dietary restriction of fermentable carbohydrates (a low FODMAP diet) has been reported to reduce symptoms in some patients with irritable bowel syndrome (IBS). We performed a randomized, placebo-controlled study to determine its effects on symptoms and the fecal microbiota in patients with IBS. METHODS: We performed a 2×2 factorial trial of 104 patients with IBS (18-65 years old), based on the Rome III criteria, at 2 hospitals in the United Kingdom. Patients were randomly assigned (blinded) to groups given counselling to follow a sham diet or diet low in FODMAPs for 4 weeks, along with a placebo or multistrain probiotic formulation, resulting in 4 groups (27 receiving sham diet/placebo, 26 receiving sham diet/probiotic, 24 receiving low FODMAP diet /placebo, and 27 receiving low FODMAP diet/probiotic). The sham diet restricted a similar number of staple and non-staple foods as the low FODMAP diet; the diets had similar degrees of difficulty to follow. Dietary counselling was given to patients in all groups and data on foods eaten and compliance were collected. The incidence and severity of 15 gastrointestinal symptoms and overall symptoms were measured daily for 7 days before the study period; along with stool frequency and consistency. At baseline, global and individual symptoms were measured, along with generic and disease-specific health-related quality of life, using standard scoring systems. All data were collected again at 4 weeks, and patients answered questions about adequate symptom relief. Fecal samples were collected at baseline and after 4 weeks and analyzed by quantitative PCR and 16S rRNA sequencing. The co-primary endpoints were adequate relief of symptoms and stool Bifidobacterium species abundance at 4 weeks. RESULTS: There was no significant interaction between the interventions in adequate relief of symptoms (P = .52) or Bifidobacterium species (P = .68). In the intention-to-treat analysis, a higher proportion of patients in the low FODMAP diet had adequate symptom relief (57%) than in the sham diet group (38%), although the difference was not statistically significant (P = .051). In the per-protocol analysis, a significantly higher proportion of patients on the low FODMAP diet had adequate symptom relief (61%) than in the sham diet group (39%) (P = .042). Total mean IBS-Severity Scoring System score was significantly lower for patients on the low FODMAP diet (173 ± 95) than the sham diet (224 ± 89) (P = .001), but not different between those given probiotic (207 ± 98) or placebo (192 ± 93) (P = .721) Abundance of Bifidobacterium species was lower in fecal samples from patients on the low FODMAP diet (8.8 rRNA genes/g) than patients on the sham diet (9.2 rRNA genes/g) (P = .008), but higher in patients given probiotic (9.1 rRNA genes/g) than patients given placebo (8.8 rRNA genes/g) (P = .019). There was no effect of the low FODMAP diet on microbiota diversity in fecal samples. CONCLUSIONS: In a placebo-controlled study of patients with IBS, a low FODMAP diet associates with adequate symptom relief and significantly reduced symptom scores compared with placebo. It is not clear whether changes resulted from collective FODMAP restriction or removal of a single component, such as lactose. Co-administration of the multistrain probiotic increased numbers of Bifidobacterium species, compared with placebo, and might be given to restore these bacteria to patients on a low FODMAP diet. Trial registration no: ISRCTN02275221.


Asunto(s)
Bifidobacterium/crecimiento & desarrollo , Dieta Baja en Carbohidratos , Carbohidratos de la Dieta/efectos adversos , Microbioma Gastrointestinal , Intestinos/microbiología , Síndrome del Colon Irritable/dietoterapia , Probióticos/uso terapéutico , Adulto , Bifidobacterium/clasificación , Bifidobacterium/genética , Terapia Combinada , Carbohidratos de la Dieta/metabolismo , Heces/microbiología , Femenino , Fermentación , Humanos , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/microbiología , Londres , Masculino , Persona de Mediana Edad , Calidad de Vida , Inducción de Remisión , Ribotipificación , Índice de Severidad de la Enfermedad , Encuestas y Cuestionarios , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
16.
J Autoimmun ; 92: 12-34, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29861127

RESUMEN

Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Hormonas Esteroides Gonadales/metabolismo , Infecciones por VIH/inmunología , Inflamación/inmunología , Intestinos/inmunología , Animales , Ácidos y Sales Biliares/metabolismo , Modelos Animales de Enfermedad , Disbiosis/microbiología , Epigénesis Genética , Hormonas Esteroides Gonadales/inmunología , Infecciones por VIH/microbiología , Humanos , Sistema Inmunológico , Intestinos/microbiología , Metabolismo de los Lípidos , Transducción de Señal
17.
Int J Food Sci Nutr ; 69(3): 318-333, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28859525

RESUMEN

Developing fish farming to meet the demands of food security and sustainability in the 21st century will require new farming systems and improved feeds. Diet and microbe interactions in the gut is an important variable with the potential to make a significant impact on future fish farming diets and production systems. It was monitored the gut microbiota of farmed rainbow trout using 16S rRNA profiling over 51 weeks during standard rearing conditions and feeding diet with supplementation of an essential oils (MixOil) mixture from plants (at a concentration in diet of 200 mg/kg). Gut microbiota 16S rRNA profiling indicated that the fish gut was dominated by Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes. Although the dietary supplementation with MixOil had no impact on either the composition or architecture of gut microbiota, significant changes in alpha and beta diversity and relative abundance of groups of gut bacteria were evident during growth stages on test feeds, especially upon prolonged growth on finishing feed. Fish fillet quality to guarantee palatability and safety for human consumption was also evaluated. Significant differences within the gut microbiota of juvenile and adult trout under the same rearing conditions were observed, The addition of essential oil blend affected some physicochemical characteristics of trout fillets, including their resistance to oxidative damage and their weight loss (as liquid loss and water holding capacity) during the first period of storage, that are two important parameters related to product shelf life and susceptibility to spoilage. The results highlighted the need for further studies concern dietary microbiome modulation at different life stages and its influence on animal health, growth performance and final product quality.


Asunto(s)
Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Aceites Volátiles/administración & dosificación , Oncorhynchus mykiss/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Calidad de los Alimentos , Biblioteca de Genes , Oncorhynchus mykiss/microbiología , ARN Ribosómico 16S/aislamiento & purificación , Alimentos Marinos/análisis , Análisis de Secuencia de ADN
18.
Anal Bioanal Chem ; 409(23): 5555-5567, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28717897

RESUMEN

The quantification of short-chain and medium-chain fatty acids is becoming more and more relevant in fecal and plasma samples due to their biological impact, which has been associated with colon rectal cancer and fiber consumption. For these reasons, a fast, cost-effective, and reproducible analytical method is highly required. In this research, a gas chromatography-mass spectrometry method based on full scan and multiple reaction monitoring (MRM) acquisition modes were optimized and validated for the analysis of short-chain and medium-chain fatty acids in three biological samples: human fecal water, fecal fermentation supernatants, and human plasma. Several extraction solvents (acidified water, diethyl ether, dichloromethane, ethyl acetate, and methyl tert-butyl ether (MTBE) were further evaluated, demonstrating that the latter was clearly the most suitable solvent with recoveries from 75.4 to 124.4% and coefficient of variations lower than 20%. The applicability of the GC-MS method was tested, for instance, acetic acid was quantified by using samples of plasma and feces from healthy donors at mean values of 66.9 µM and 24.5 mM, respectively. The optimized protocol could successfully find applications within multi-compartment human studies. In parallel, a second pilot experiment on fecal fermentation supernatants indicated that the proposed protocol is suitable to follow the formation of SCFAs during in vitro fermentation by the human gut microbiota. In summary, the present work provided an improved GC-MS method for precise and accurate quantification of SCFAs and MCFAs in human feces and plasma.


Asunto(s)
Líquidos Corporales/química , Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis Costo-Beneficio , Fermentación , Cromatografía de Gases y Espectrometría de Masas/economía , Humanos
19.
Gut ; 65(2): 330-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26338727

RESUMEN

Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Estado de Salud , Animales , Enfermedades Autoinmunes/microbiología , Bacterias/metabolismo , Colitis Ulcerosa/microbiología , Enfermedad de Crohn/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Hepatopatías/microbiología , Hepatopatías Alcohólicas/microbiología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/etiología , Polifenoles/metabolismo , Reservoritis/microbiología , Prebióticos , Probióticos
20.
Curr Res Microb Sci ; 6: 100214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38116184

RESUMEN

Spontaneous fermentation of Tritordeum flour enhances the nutritional potential of this hybrid cereal. However, the effect of consumption of Tritordeum sourdough bread (SDB) on gut health remains to be elucidated. This study investigated the effect of in vitro digestion and faecal fermentation of SDB compared to that of traditional baker's yeast (BYB) Tritordeum bread. After 24-h anaerobic faecal fermentation, both SDB and BYB (1% w/v) induced an increase in the relative abundances of Bifidobacterium, Megasphaera, Mitsuokella, and Phascolarctobacterium genera compared to baseline, while concentrations of acetate and butyrate were significantly higher at 24 h for SDB compared to those for BYB. Integrity of intestinal epithelium, as assessed through in vitro trans-epithelial electrical resistance (TEER) assay, was slightly increased after incubation with SDB fermentation supernatants, but not after incubation with BYB fermentation supernatants. The SDB stimulated in vitro mucosal immune response by inducing early secretion of inflammatory cytokines, IL-6 and TNF-α, followed by downregulation of the inflammatory trigger through induction of anti-inflammatory IL-10 expression. Overall, our findings suggest that Tritordeum sourdough can modulate gut microbiota fermentation activity and positively impact the gut health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA