Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(49): e2203241120, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015839

RESUMEN

The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.


Asunto(s)
Bacillaceae , Bacillus , Culex , Plaguicidas , Animales , Bacillaceae/química , Bacillaceae/metabolismo , Control de Mosquitos , Larva/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037379

RESUMEN

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Asunto(s)
Hongos , Estadios del Ciclo de Vida , Filogenia , Diploidia , Hongos/clasificación , Hongos/genética , Genoma Fúngico/genética
3.
Mol Biol Evol ; 38(9): 3512-3530, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34191026

RESUMEN

The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.


Asunto(s)
Artrópodos , Virus , Animales , Artrópodos/genética , Baculoviridae/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Insectos/genética , Virus/genética
4.
J Gen Virol ; 103(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35441589

RESUMEN

Ascoviruses are large double-stranded DNA insect viruses that destroy the nucleus and transform each cell into 20 or more viral vesicles for replication. In the present study we used RNA-sequencing to compare the expression of Trichoplusia ni ascovirus 6a1 (TnAV-6a1) core genes during the first week of infection, with emphasis on the first 48 h, comparing transcript levels in major somatic tissues (epidermis, tracheal matrix and fat body), the sites infected initially, with those of the haemolymph, where viral vesicles circulate and most replication occurs. By 48 h post-infection (p.i.), only 26 genes were expressed in somatic tissues at ≥5 log2 reads per kilobase per million, whereas in the haemolymph 48 genes were expressed at a similar level by the same time. Early and high expression of TnAV caspase-2-like gene occurred in all tissues, implying it is required for replication, but that it is probably not associated with apoptosis induction, which occurs in infections of Spodoptera frugiperda ascovirus 1 a (SfAV-1a), the ascovirus type species. Other highly expressed viral genes at 48 h p.i. in viral vesicles included a dynein-like beta chain and lipid-modifying enzymes, suggesting their importance to vesicle formation and growth as well as virion synthesis. Finally, as occurs in SfAV expression, we found bicistronic and tricistronic mRNA messages produced by TnAV.


Asunto(s)
Ascoviridae , Lepidópteros , Animales , Ascoviridae/genética , Virus ADN/genética , Spodoptera , Transcriptoma , Virión/genética
5.
Nature ; 539(7627): 43-47, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27680699

RESUMEN

BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine- and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.


Asunto(s)
Bacillus/química , Toxinas Bacterianas/química , Culicidae , Insecticidas/química , Larva , Rayos Láser , Animales , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Culicidae/metabolismo , Concentración de Iones de Hidrógeno , Larva/química , Larva/metabolismo , Modelos Moleculares , Multimerización de Proteína , Proteolisis , Tirosina/química
6.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075926

RESUMEN

Ascoviruses are large, enveloped DNA viruses that induce remarkable changes in cellular architecture during which the cell is partitioned into numerous vesicles for viral replication. Previous studies have shown that these vesicles arise from a process resembling apoptosis yet which differs after nuclear lysis in that mitochondria are not degraded but are modified by the virus, changing in size, shape, and motility. Moreover, infection does not provoke an obvious innate immune response. Thus, we used in vivo RNA sequencing to determine whether infection by the Spodoptera frugiperda ascovirus 1a (SfAV-1a) modified expression of host mitochondrial, cytoskeletal, and innate immunity genes. We show that transcripts from many mitochondrial genes were similar to those from uninfected controls, whereas others increased slightly during vesicle formation, including those for ATP6, ATP8 synthase, and NADH dehydrogenase subunits, supporting electron microscopy (EM) data that these organelles were conserved for virus replication. Transcripts from 58 of 106 cytoskeletal genes studied increased or decreased more than 2-fold postinfection. More than half coded for mitochondrial motor proteins. Similar increases occurred for innate immunity transcripts and their negative regulators, including those for Toll, melanization, and phagocytosis pathways. However, those for many antimicrobial peptides, such as moricin, increased more than 20-fold. In addition, transcripts for gloverin-3, spod_x_tox, Hdd23, and lebocin, also antimicrobial, increased more than 20-fold. Interestingly, a phenoloxidase inhibitor transcript increased 12-fold, apparently to interfere with melanization. SfAV-1a destroys most fat body cells by 7 days postinfection, so innate immunity gene transcripts apparently occur in remaining cells in this tissue and possibly other major tissues, namely, epidermis and tracheal matrix.IMPORTANCE Ascoviruses are large DNA viruses that infect insects, inducing a cellular pathology that resembles apoptosis but which differs by causing enormous cellular hypertrophy followed by cleavage of the cell into numerous viral vesicles for replication. Previous EM studies suggest that mitochondria are important for vesicle formation. Transcriptome analyses of Spodoptera frugiperda larvae infected with SfAV-1a showed that mitochondrial transcripts were similar to those from uninfected controls or increased slightly during vesicle formation, especially for ATP6, ATP8 synthase, and NADH dehydrogenase subunits. This pattern resembles that for chronic disease-inducing viruses, which conserve mitochondria, differing markedly from viruses causing short-term viral diseases, which degrade mitochondrial DNA. Though mitochondrial transcript increases were low, our results demonstrate that SfAV-1a alters host mitochondrial expression more than any other virus. Regarding innate immunity, although SfAV-1a destroys most fat body cells, certain immunity genes were highly upregulated (greater than 20-fold), suggesting that these transcripts may originate from other tissues.


Asunto(s)
Ascoviridae/genética , Mitocondrias/genética , Replicación Viral/genética , Animales , Ascoviridae/metabolismo , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Larva/virología , Mitocondrias/metabolismo , Análisis de Secuencia de ARN , Spodoptera/genética , Spodoptera/metabolismo , Transcriptoma , Proteínas Virales/genética , Replicación Viral/fisiología
7.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28956762

RESUMEN

Ascoviruses are double-stranded DNA (dsDNA) viruses that attack caterpillars and differ from all other viruses by inducing nuclear lysis followed by cleavage of host cells into numerous anucleate vesicles in which virus replication continues as these grow in the blood. Ascoviruses are also unusual in that most encode a caspase or caspase-like proteins. A robust cell line to study the novel molecular biology of ascovirus replication in vitro is lacking. Therefore, we used strand-specific transcriptome sequencing (RNA-Seq) to study transcription in vivo in third instars of Spodoptera frugiperda infected with the type species, Spodoptera frugiperda ascovirus1a (SfAV-1a), sampling transcripts at different time points after infection. We targeted transcription of two types of SfAV-1a genes; first, 44 core genes that occur in several ascovirus species, and second, 26 genes predicted in silico to have metabolic functions likely involved in synthesizing viral vesicle membranes. Gene cluster analysis showed differences in temporal expression of SfAV-1a genes, enabling their assignment to three temporal classes: early, late, and very late. Inhibitors of apoptosis (IAP-like proteins; ORF016, ORF025, and ORF074) were expressed early, whereas its caspase (ORF073) was expressed very late, which correlated with apoptotic events leading to viral vesicle formation. Expression analysis revealed that a Diedel gene homolog (ORF121), the only known "virokine," was highly expressed, implying that this ascovirus protein helps evade innate host immunity. Lastly, single-nucleotide resolution of RNA-Seq data revealed 15 bicistronic and tricistronic messages along the genome, an unusual occurrence for large dsDNA viruses.IMPORTANCE Unlike all other DNA viruses, ascoviruses code for an executioner caspase, apparently involved in a novel cytopathology in which viral replication induces nuclear lysis followed by cell cleavage, yielding numerous large anucleate viral vesicles that continue to produce virions. Our transcriptome analysis of genome expression in vivo by the Spodoptera frugiperda ascovirus shows that inhibitors of apoptosis are expressed first, enabling viral replication to proceed, after which the SfAV-1a caspase is synthesized, leading to viral vesicle synthesis and subsequent extensive production of progeny virions. Moreover, we detected numerous bicistronic and tricistronic mRNA messages in the ascovirus transcriptome, implying that ascoviruses use other noncanonical translational mechanisms, such as internal ribosome entry sites (IRESs). These results provide the first insights into the molecular biology of a unique coordinated gene expression pattern in which cell architecture is markedly modified, more than in any other known eukaryotic virus, to promote viral reproduction and transmission.


Asunto(s)
Ascoviridae/patogenicidad , Perfilación de la Expresión Génica/métodos , Spodoptera/virología , Proteínas Virales/genética , Animales , Ascoviridae/genética , Caspasas/genética , Regulación Viral de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis , Familia de Multigenes , Análisis de Secuencia de ARN/métodos , Virión/genética , Replicación Viral
8.
J Gen Virol ; 98(1): 4-5, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28218573

RESUMEN

The family Ascoviridae includes viruses with circular dsDNA genomes of 100-200 kbp characterized by oblong enveloped virions of 200-400 nm in length. Ascoviruses mainly infect lepidopteran larvae and are mechanically transmitted by parasitoid wasps in which they may also replicate. Most known members belong to the genus Ascovirus, except one virus, that of the genus Toursvirus, which replicates in both its lepidopteran and parasitoid vector hosts. Ascoviruses cause high mortality among economically important insect pests, thereby controlling insect populations. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ascoviridae, which is available at www.ictv.global/report/ascoviridae.


Asunto(s)
Ascoviridae/clasificación , Animales , Ascoviridae/genética , Ascoviridae/fisiología , Ascoviridae/ultraestructura , Insectos/virología , Larva/virología
9.
J Invertebr Pathol ; 149: 66-75, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28782510

RESUMEN

The biopesticide used most effectively to control mosquito and blackfly vectors of human diseases worldwide is Bacillus thuringiensis subsp. israelensis. The high efficacy of this bacterium is due to synergistic interactions among four protein entomotoxins assembled individually into a single parasporal body (PB) during sporulation. Cyt1Aa, the primary synergist, is the most abundant toxin, comprising approximately 55% of the PB's mass. The other proteins are Cry11Aa at ∼35%, and Cry4Aa and Cry4Ba, which together account for the remaining ∼10%. The molecular genetic basis for the comparatively large amount of Cyt1Aa synthesized is unknown. Here, in addition to the known strong BtI (σE) and BtII (σK) promoters, we demonstrate a third promoter (BtIII) that has high identity to the σE promoter of Bacillus subtilis, contributes to the large amount of Cyt1Aa synthesized. We also show that a cyt1Aa-BtIII construct was not functional in a σE-deficient strain of B. subtilis. Comparison of transcription levels and protein profiles for recombinant strains containing different combinations of BtI, BtII and BtIII, or each promoter alone, showed that BtIII is active throughout sporulation. We further demonstrate that a stable stem-loop in the 3'-untranslated region (3'-UTR, predicted ΔG=-27.6) contributes to the high level of Cyt1Aa synthesized.


Asunto(s)
Regiones no Traducidas 3' , Regiones no Traducidas 5' , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis , Regiones Promotoras Genéticas
10.
Proc Natl Acad Sci U S A ; 111(35): 12769-74, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136092

RESUMEN

It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼ 5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information.


Asunto(s)
Bacillus thuringiensis/química , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Endotoxinas/química , Proteínas Hemolisinas/química , Esporas Bacterianas/química , Bacillus thuringiensis/ultraestructura , Toxinas de Bacillus thuringiensis , Cristalización , Cristalografía por Rayos X/instrumentación , Rayos Láser , Esporas Bacterianas/ultraestructura , Sincrotrones , Difracción de Rayos X
11.
Curr Microbiol ; 72(1): 33-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26395591

RESUMEN

Cyt1Aa is a major mosquitocidal protein synthesized during sporulation of Bacillus thuringiensis subsp. israelensis, composing more than 50% of its parasporal body. This high level of synthesis is due to several factors including three strong sporulation-dependent promoters, a strong transcription termination sequence, and an associated 20-kDa helper protein. Cyt1Aa's toxicity is low compared to the Cry proteins of this species, namely, Cry4Aa, Cry4Ba, and Cry11Aa, but it nevertheless plays an important role in the biology of B. thuringiensis subsp. israelensis in that it synergizes their mosquitocidal toxicity and suppresses the evolution of resistance. In the present study, the effects of using different cyt1Aa promoter combinations and plasmid copy number on synthesis of Cyt1Aa were evaluated. Using the 4Q7 (plasmid-cured) strain of B. thuringiensis subsp. israelensis as an experimental host, a plasmid copy number of two or three yielded no Cyt1Aa, whereas a copy number of four yielded only small crystals, even when expression was driven by one of the wild-type promoters. However, using all three wild-type promoters and a plasmid copy number of 20 yielded Cyt1A crystals tenfold larger than those produced by one promoter and a plasmid copy number of four. High levels of Cyt1Aa synthesis resulted in significantly fewer spores per unit medium and imperfectly formed crystals. Similar results were obtained when Cyt1Aa synthesis was evaluated using the same expression constructs in a mutant strain of B. thuringiensis subsp. israelensis that lacks the cyt1Aa gene.


Asunto(s)
Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Plásmidos , Regiones Promotoras Genéticas , Toxinas de Bacillus thuringiensis , Dosificación de Gen , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
12.
J Invertebr Pathol ; 140: 35-38, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27449679

RESUMEN

Iridescent (IVs, family Iridoviridae, genus Iridovirus) and cytoplasmic polyhedrosis viruses (CPVs; family Reoviridae, genus Cypovirus) are well known in insects, with thirteen IV species recognized from various orders, and sixteen CPV species known from lepidopterans. In 1975, an IV and CPV were reported in the daphnid, Simocehpalus expinosus, in Florida, but other reported daphnid virus infections seem to be rare. Here we report infected daphnids from woodland and carp ponds in the Czech Republic, Daphnia curvirostris with an IV, and D. pulex and D. ambigua, with CPVs. This suggests these viruses are more common in daphnids, the rarity of reports due to few surveys.


Asunto(s)
Daphnia/virología , Virosis/veterinaria , Animales , República Checa , Iridovirus , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Reoviridae
13.
Mol Phylogenet Evol ; 84: 44-52, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25562178

RESUMEN

The family Iridoviridae of the superfamily Megavirales currently consists of five genera. Three of these, Lymphocystivirus, Megalocytivirus and Ranavirus, are composed of species that infect vertebrates, and the other two, Chloriridovirus and Iridovirus, contain species that infect invertebrates. Until recently, the lack of genomic sequence data limited investigation of the evolutionary relationships between the invertebrate iridoviruses (IIVs) and vertebrate iridoviruses (VIVs), as well as the relationship of these viruses to those of the closely related family Ascoviridae, which only contains species that infect insects. To help clarify the phylogenetic relationships of these viruses, we recently published the annotated genome sequences of five additional IIV isolates. Here, using classical approaches of phylogeny via maximum likelihood, a Bayesian approach, and resolution of a core protein tree, we demonstrate that the invertebrate and vertebrate IV species constitute two lineages that diverged early during the evolution of the family Iridoviridae, before the emergence of the four IIV clades, previously referred to as Chloriridoviruses, Polyiridoviruses, Oligoiridoviruses and Crustaceoiridoviruses. In addition, we provide evidence that species of the family Ascoviridae have a more recent origin than most iridoviruses, emerging just before the differentiation between the Oligoiridoviruses and Crustaceoiridovirus clades. Our results also suggest that after emergence, based on their molecular clock, the ascoviruses evolved more quickly than their closest iridovirus relatives.


Asunto(s)
Ascoviridae/clasificación , Evolución Biológica , Iridoviridae/clasificación , Filogenia , Animales , Teorema de Bayes , Genoma Viral , Insectos/virología , Invertebrados/virología , Funciones de Verosimilitud , Análisis de Secuencia de ADN
14.
J Med Entomol ; 52(5): 1028-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26336254

RESUMEN

Fourth instars of Culex quinquefasciatus (Say) (Diptera: Culicidae) were selected with a recombinant bacterial strain synthesizing the mosquitocidal proteins from Lysinibacillus sphaericus (Bin) and Cry11Ba and Cyt1Aa from Bacillus thuringiensis. Selection was initiated in Generation 1 with a concentration of 0.04 µg/ml, which rose to a maximum selection concentration of 8.0 µg/ml in Generation 14, followed by an unexpected, rapid increase in mortality in Generation 15. Subsequently, a selection concentration of 0.8 µg/ml was determined to be survivable. During this same period, resistance rose to nearly 1,000-fold (by Generation 12) and declined to 18.8-fold in Generation 19. Resistance remained low and fluctuated between 5.3 and 7.3 up to Generation 66. The cross-resistance patterns and interactions among the component proteins were analyzed to identify possible causes of this unusual pattern of evolution. Poor activity in the mid-range concentrations and lower-than-expected synergistic interactions were identified as potential sources of the early resistance. These findings should be considered in the development of genetically engineered strains intended to control nuisance and vector mosquitoes.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Culex/genética , Endotoxinas/farmacología , Evolución Molecular , Proteínas Hemolisinas/farmacología , Resistencia a los Insecticidas , Control Biológico de Vectores , Animales , Bacillus/genética , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Culex/efectos de los fármacos , Culex/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/genética , Larva/crecimiento & desarrollo
15.
J Gen Virol ; 95(Pt 7): 1585-1590, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722681

RESUMEN

Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 31 (IIV31) was originally isolated from adult pill bugs, Armadillidium vulgare (class Crustacea, order Isopoda, suborder Oniscidea), found in southern California on the campus of the University of California, Riverside, USA. IIV31 virions are icosahedral, have a diameter of about 135 nm, and contain a dsDNA genome 220.222 kbp in length, with 35.09 mol % G+C content and 203 ORFs. Here, we describe the complete genome sequence of this virus and its annotation. This is the eighth genome sequence of an IIV reported.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Genoma Viral , Iridovirus/clasificación , Iridovirus/genética , Isópodos/virología , Animales , Composición de Base , California , Iridovirus/aislamiento & purificación , Iridovirus/ultraestructura , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Virión/ultraestructura
16.
Arch Virol ; 159(5): 1181-5, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24232916

RESUMEN

Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridovirus 25 (IIV-25) was originally isolated from the larva of a blackfly (Simulium spp., order Diptera) found in the Ystwyth river near Aberystwyth, Wales. IIV-25 virions are icosahedral, have a diameter of ~130 nm, and contain a dsDNA genome of 204.8 kbp, with a G+C content of 30.32 %, that codes for 177 proteins. Here, we describe the complete genome sequence of this virus and its annotation. This is the fifth genome sequence of an invertebrate iridovirus reported.


Asunto(s)
Dípteros/virología , Genoma Viral , Iridovirus/genética , Iridovirus/aislamiento & purificación , Animales , Regulación Viral de la Expresión Génica , Larva/virología
17.
J Invertebr Pathol ; 115: 62-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24144574

RESUMEN

The interaction of Mtx toxins from Lysinibacillus sphaericus (formerly Bacillus sphaericus) with Bacillus thuringiensis subsp. israelensis Cry toxins and the influence of such interactions on Cry-resistance were evaluated in susceptible and Cry-resistant Culex quinquefasciatus larvae. Mtx-1 and Mtx-2 were observed to be active against both susceptible and resistant mosquitoes; however varying levels of cross-resistance toward Mtx toxins were observed in the resistant mosquitoes. A 1:1 mixture of either Mtx-1 or Mtx-2 with different Cry toxins generally showed moderate synergism, but some combinations were highly toxic to resistant larvae and suppressed resistance. Toxin synergy has been demonstrated to be a powerful tool for enhancing activity and managing Cry-resistance in mosquitoes, thus Mtx toxins may be useful as components of engineered bacterial larvicides.


Asunto(s)
Bacillus/química , Proteínas Bacterianas/toxicidad , Culex/microbiología , Resistencia a los Insecticidas/fisiología , Control Biológico de Vectores/métodos , Animales , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad
18.
J Invertebr Pathol ; 116: 43-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24394746

RESUMEN

Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. The invertebrate iridovirus 30 (IIV30) was originally isolated from a larva of the corn earworm, Helicoverpa zea (order lepidoptera, Family Noctuidae) in western Australia. The IIV30 virions are icosahedral, have a diameter of about 130nm, and contain a dsDNA genome of 198.5kbp with 28.11% in GC content and 177 coding sequences. Here we describe its complete genome sequence and annotate the genes for which we could assign a putative function. This is the sixth genome sequence of an invertebrate iridovirus reported.


Asunto(s)
Genoma Viral , Iridovirus/genética , Mariposas Nocturnas/virología , Animales , Secuencia de Bases , Mapeo Cromosómico , Iridovirus/aislamiento & purificación , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
J Gen Virol ; 94(Pt 9): 2112-2116, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804567

RESUMEN

Members of the family Iridoviridae are animal viruses that infect only invertebrates and poikilothermic vertebrates. Invertebrate iridescent virus 22 (IIV-22) was originally isolated from the larva of a blackfly (Simulium sp., order Diptera) found in the Ystwyth river, near Aberystwyth, Wales, UK. IIV-22 virions are icosahedral, with a diameter of about 130 nm and contain a dsDNA genome that is 197.7 kb in length, has a G+C content of 28.05 mol% and contains 167 coding sequences. Here, we describe the complete genome sequence of this virus and its annotation. This is the fourth genome sequence of an invertebrate iridovirus to be reported.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Genoma Viral , Iridovirus/genética , Simuliidae/virología , Animales , Composición de Base , Secuencia de Bases , Iridovirus/aislamiento & purificación , Larva/virología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Gales
20.
Appl Environ Microbiol ; 79(11): 3364-70, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23524673

RESUMEN

The total protoxin complement in the parasporal body of mosquitocidal strain, Bacillus thuringiensis subsp. jegathesan 367, was determined by use of a polyacrylamide gel block coupled to mass spectrometry. A total of eight protoxins were identified from this strain, including five reported protoxins (Cry11Ba, Cry19Aa, Cry24Aa, Cry25Aa, and Cyt2Bb), as well as three previously undescribed (Cry30Ca, Cry60Aa, and Cry60Ba) in this isolate. It was interesting that the encoding genes of three new protoxins existed as cry30Ca-gap-orf2 and cry60Ba-gap-cry60Aa. The cry30Ca and a downstream orf2 gene were oriented in the same direction and separated by 114 bp, and cry60Ba was located 156 bp upstream from and in the same orientation to cry60Aa. The three new protoxin genes were cloned from B. thuringiensis subsp. jegathesan and expressed in an acrystalliferous strain under the control of cyt1A gene promoters and the STAB-SD stabilizer sequence. Recombinant strain containing only cry30Ca did not produce visible inclusion under microscope observation, while that containing both cry30Ca and orf2 could produce large inclusions. Cry60Aa and Cry60Ba synthesized either alone or together in the acrystalliferous host could yield large inclusions. In bioassays using the fourth-instar larvae of Culex quinquefasciatus, Cry60Aa and Cry60Ba alone or together had estimated 50% lethal concentrations of 2.9 to 7.9 µg/ml; however, Cry30Ca with or without ORF2 was not toxic to this mosquito.


Asunto(s)
Bacillus thuringiensis/química , Toxinas Bacterianas/genética , Precursores de Proteínas/genética , Toxinas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/metabolismo , Secuencia de Bases , Cromatografía Liquida , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Precursores de Proteínas/aislamiento & purificación , Precursores de Proteínas/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA