Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Chem Biol ; 14(8): 764-767, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013061

RESUMEN

L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic ß-cell function and cardiac activity under optical control.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Diltiazem/farmacología , Colorantes Fluorescentes/farmacología , Corazón/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Imagen Óptica , Canales de Calcio Tipo L/química , Diltiazem/química , Colorantes Fluorescentes/química , Humanos , Células Secretoras de Insulina/metabolismo , Luz , Procesos Fotoquímicos
2.
Angew Chem Int Ed Engl ; 58(43): 15421-15428, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31441199

RESUMEN

Photopharmacology relies on ligands that change their pharmacodynamics upon photoisomerization. Many of these ligands are azobenzenes that are thermodynamically more stable in their elongated trans-configuration. Often, they are biologically active in this form and lose activity upon irradiation and photoisomerization to their cis-isomer. Recently, cyclic azobenzenes, so-called diazocines, have emerged, which are thermodynamically more stable in their bent cis-form. Incorporation of these switches into a variety of photopharmaceuticals could convert dark-active ligands into dark-inactive ligands, which is preferred in most biological applications. This "pharmacological sign-inversion" is demonstrated for a photochromic blocker of voltage-gated potassium channels, termed CAL, and a photochromic opener of G protein-coupled inwardly rectifying potassium (GIRK) channels, termed CLOGO.


Asunto(s)
Compuestos Azo/química , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Luz , Bloqueadores de los Canales de Potasio/química , Potenciales de Acción/efectos de los fármacos , Compuestos Azo/farmacología , Ciclización , Diseño de Fármacos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Células HEK293 , Humanos , Isomerismo , Lidocaína/química , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Termodinámica
4.
Nat Methods ; 9(4): 396-402, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22343342

RESUMEN

Local anesthetics effectively suppress pain sensation, but most of these compounds act nonselectively, inhibiting activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We developed a photoisomerizable molecule, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans form but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Because intracellular QAQ accumulation is a consequence of nociceptive ion-channel activity, QAQ-mediated photosensitization is a platform for understanding signaling mechanisms in acute and chronic pain.


Asunto(s)
Canales Iónicos/metabolismo , Nocicepción/efectos de los fármacos , Nocicepción/efectos de la radiación , Animales , Compuestos Azo/química , Compuestos Azo/farmacología , Línea Celular , Células HEK293 , Humanos , Canales Iónicos/antagonistas & inhibidores , Ratones , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de la radiación , Estimulación Luminosa , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Ratas , Receptores Purinérgicos P2X7/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/efectos de la radiación , Canales Catiónicos TRPV/metabolismo , Factores de Tiempo
5.
Angew Chem Int Ed Engl ; 50(51): 12156-82, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22109984

RESUMEN

Transmembrane receptors allow a cell to communicate with its environment in response to a variety of input signals. These can be changes in the concentration of ligands (e.g. hormones or neurotransmitters), temperature, pressure (e.g. acoustic waves or touch), transmembrane potential, or light intensity. Many important receptors have now been characterized in atomic detail and our understanding of their functional properties has markedly increased in recent years. As a consequence, these sophisticated molecular machines can be reprogrammed to respond to unnatural input signals. In this Review, we show how voltage-gated and ligand-gated ion channels can be endowed with synthetic photoswitches, and how the resulting artificial photoreceptors can be used to optically control neurons with exceptional temporal and spatial precision. They work well in animals and might find applications in the restoration of vision and the optical control of other sensations. The combination of synthetic photoswitches and receptor proteins contributes to the field of optogenetics and adds a new functional dimension to chemical genetics. As such, we propose to call it "optochemical genetics".


Asunto(s)
Canales Iónicos Activados por Ligandos/química , Células Fotorreceptoras/química , Canales de Potasio con Entrada de Voltaje/química , Animales , Encéfalo/citología , Encéfalo/fisiología , Técnicas Genéticas , Humanos , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/fisiología , Modelos Moleculares , Procesos Fotoquímicos , Células Fotorreceptoras/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/fisiología
8.
Methods Mol Biol ; 995: 89-105, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23494374

RESUMEN

Voltage-gated potassium (K v) channels are membrane proteins that open a selective pore upon membrane depolarization, allowing K(+) ions to flow down their electrochemical gradient. In neurons, K v channels play a key role in repolarizing the membrane potential during the falling phase of the action potential, often resulting in an after hyperpolarization. Opening of K v channels results in a decrease of cellular excitability, whereas closing (or pharmacological block) has the opposite effect, increased excitability. We have developed a series of photosensitive blockers for K v channels that enable reversible, optical regulation of potassium ion flow. Such molecules can be used for remote control of neuronal excitability using light as an on/off switch. Here we describe the design and electrophysiological characterization of photochromic blockers of ion channels. Our focus is on K v channels but in principle, the techniques described here can be applied to other ion channels and signaling proteins.


Asunto(s)
Compuestos Azo/química , Diseño de Fármacos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Compuestos Azo/farmacología , Compuestos Azo/efectos de la radiación , Técnicas de Cultivo de Célula , Células HEK293 , Humanos , Luz , Potenciales de la Membrana , Técnicas de Placa-Clamp/métodos , Procesos Fotoquímicos , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/efectos de la radiación , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/biosíntesis , Canales de Potasio de la Superfamilia Shaker/biosíntesis , Estereoisomerismo , Transfección
9.
ACS Chem Neurosci ; 2(9): 536-43, 2011 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22860175

RESUMEN

Photochromic channel blockers provide a conceptually simple and convenient way to modulate neuronal activity with light. We have recently described a family of azobenzenes that function as tonic blockers of K(v) channels but require UV-A light to unblock and need to be actively switched by toggling between two different wavelengths. We now introduce red-shifted compounds that fully operate in the visible region of the spectrum and quickly turn themselves off in the dark. Furthermore, we have developed a version that does not block effectively in the dark-adapted state, can be switched to a blocking state with blue light, and reverts to the inactive state automatically. Photochromic blockers of this type could be useful for the photopharmacological control of neuronal activity under mild conditions.


Asunto(s)
Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/farmacología , Animales , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Canales de Potasio de Tipo Rectificador Tardío/efectos de los fármacos , Electrones , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Microelectrodos , Técnicas de Placa-Clamp , Fotoquímica , Ratas , Ratas Sprague-Dawley , Solventes , Espectrofotometría Ultravioleta , Estereoisomerismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA