RESUMEN
Conformational change of the ß2 integrin lymphocyte function-associated antigen 1 (LFA-1) is an early marker of T cell activation. A protocol using the mAb clone m24 recognizing the active, extended high-affinity conformation has been previously described for the assessment of functional CD4+ and CD8+ T cells in response to MHC-peptide stimulation. We investigated the applicability of the m24 mAb to detect the activation of γδ T cells in response to different soluble and immobilized stimuli. m24 mAb staining was associated with the expression of cytokines and was detectable as early as 10 min after stimulation, but with different kinetics depending on the nature of the stimulus. Hence, we conclude that this assay is suitable for the detection of functional γδ T cells and allows the assessment of activation more rapidly than alternative methods such as cytokine detection. Intracellular staining, protein trafficking inhibitors, or prior knowledge of the stimulating moiety recognized are no longer required for monitoring γδ T cell activation.
Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T , Linfocitos T CD8-positivos , Citocinas/metabolismo , Integrinas/metabolismo , Activación de LinfocitosRESUMEN
An advanced intestine-on-chip model recreating epithelial 3D organotypic villus-like and crypt-like structures has been developed. The immunocompetent model includes Human Umbilical Vein Endothelial Cells (HUVEC), Caco-2 intestinal epithelial cells, tissue-resident macrophages, and dendritic cells, which self-organize within the tissue, mirroring characteristics of the human intestinal mucosa. A unique aspect of this platform is its capacity to integrate circulating human primary immune cells, enhancing physiological relevance. The model is designed to investigate the intestinal immune system's response to bacterial and fungal colonization and infection. Due to its enlarged cavity size, the model offers diverse functional readouts such as permeation assays, cytokine release, and immune cell infiltration, and is compatible with immunofluorescence measurement of 3D structures formed by the epithelial cell layer. It hereby provides comprehensive insights into cell differentiation and function. The intestine-on-chip platform has demonstrated its potential in elucidating complex interactions between surrogates of a living microbiota and human host tissue within a microphysiological perfused biochip platform.
Asunto(s)
Mucosa Intestinal , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/citología , Células CACO-2 , Células Endoteliales de la Vena Umbilical Humana , Inmunidad Mucosa/inmunología , Dispositivos Laboratorio en un Chip , Células Dendríticas/inmunología , Células Dendríticas/citología , Macrófagos/inmunología , Macrófagos/citologíaRESUMEN
Cardiovascular diseases are the leading cause of death globally. Vascular implants, such as stents, are required to treat arterial stenosis or dilatation. The development of innovative stent materials and coatings, as well as novel preclinical testing strategies, is needed to improve the bio- and hemocompatibility of current stents. In this study, a blood vessel-like polydimethylsiloxane (PDMS) model was established to analyze the interaction of an endothelium with vascular implants, as well as blood-derived cells, in vitro. Using footprint-free human induced pluripotent stem cells (hiPSCs) and subsequent differentiation, functional endothelial cells (ECs) expressing specific markers were generated and used to endothelialize an artificial PDMS lumen. The established model was used to demonstrate the interaction of the created endothelium with blood-derived immune cells, which also allowed for real-time imaging. In addition, a stent was inserted into the endothelialized lumen to analyze the surface endothelialization of stents. In the future, this blood vessel-like model could serve as an in vitro platform to test the influence of vascular implants and coatings on endothelialization and to analyze the interaction of the endothelium with blood cell components.