Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Funct Mater ; 31(7)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33613150

RESUMEN

Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.

2.
Nat Methods ; 12(2): 134-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25506720

RESUMEN

Our Patterning on Topography (PoT) printing technique enables fibronectin, laminin and other proteins to be applied to biomaterial surfaces in complex geometries that are inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface. Here, we used this method to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Dimetilpolisiloxanos/química , Proteínas de la Matriz Extracelular/química , Nanotecnología/métodos , Animales , Adhesión Celular , Células Cultivadas , Embrión de Pollo , Corazón/embriología , Miocitos Cardíacos/citología , Impresión , Propiedades de Superficie
3.
Annu Rev Biomed Eng ; 17: 243-65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26643022

RESUMEN

In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.


Asunto(s)
Modelos Biológicos , Robótica/métodos , Animales , Fenómenos Biomecánicos , Ingeniería Biomédica , Biomimética , Humanos , Proteínas Motoras Moleculares/fisiología , Células Musculares/fisiología , Ingeniería de Tejidos
4.
Stem Cells Transl Med ; 13(5): 425-435, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38502194

RESUMEN

The ultimate goal of cardiac tissue engineering is to generate new muscle to repair or replace the damaged heart. This requires advances in stem cell technologies to differentiate billions of cardiomyocytes, together with advanced biofabrication approaches such as 3D bioprinting to achieve the requisite structure and contractile function. In this concise review, we cover recent progress in 3D bioprinting of cardiac tissue using pluripotent stem cell-derived cardiomyocytes, key design criteria for engineering aligned cardiac tissues, and ongoing challenges in the field that must be addressed to realize this goal.


Asunto(s)
Bioimpresión , Miocitos Cardíacos , Impresión Tridimensional , Ingeniería de Tejidos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Humanos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Animales , Diferenciación Celular , Células Madre Pluripotentes/citología , Andamios del Tejido/química , Miocardio/citología , Miocardio/metabolismo
5.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352326

RESUMEN

Microfluidic and organ-on-a-chip devices have improved the physiologic and translational relevance of in vitro systems in applications ranging from disease modeling to drug discovery and pharmacology. However, current manufacturing approaches have limitations in terms of materials used, non-native mechanical properties, patterning of extracellular matrix (ECM) and cells in 3D, and remodeling by cells into more complex tissues. We present a method to 3D bioprint ECM and cells into microfluidic collagen-based high-resolution internally perfusable scaffolds (CHIPS) that address these limitations, expand design complexity, and simplify fabrication. Additionally, CHIPS enable size-dependent diffusion of molecules out of perfusable channels into the surrounding device to support cell migration and remodeling, formation of capillary-like networks, and integration of secretory cell types to form a glucose-responsive, insulin-secreting pancreatic-like microphysiological system.

6.
Adv Mater Technol ; 8(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732106

RESUMEN

Thermally cured thermoset polymers such as epoxies are widely used in industry and manufacturing due to their thermal, chemical, and electrical resistance, and mechanical strength and toughness. However, it can be challenging to 3D print thermally cured thermosets without rheological modification because they tend to flow and not hold their shape when extruded due to cure times of minutes to hours. 3D printing inside a support bath addresses this by allowing the liquid polymer to be held in place until the thermoset is fully cured and expands the structures that can be printed as extrusion is not limited to layer-by-layer. Here we report the use of Freeform Reversible Embedding (FRE) to 3D print off-the-shelf thermoset epoxy into lattice structures using non-planar extrusion. To do this we investigate how extrusion direction in 3D space impacts epoxy filament morphology and fusion at filament intersections. Further, we show the advantages of this approach by using non-planar printing to produce lattice geometries that show ~4 times greater specific modulus compared to lattice structures printed using other materials and printing techniques.

7.
ArXiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645046

RESUMEN

Our ability to produce human-scale bio-manufactured organs is critically limited by the need for vascularization and perfusion. For tissues of variable size and shape, including arbitrarily complex geometries, designing and printing vasculature capable of adequate perfusion has posed a major hurdle. Here, we introduce a model-driven design pipeline combining accelerated optimization methods for fast synthetic vascular tree generation and computational hemodynamics models. We demonstrate rapid generation, simulation, and 3D printing of synthetic vasculature in complex geometries, from small tissue constructs to organ scale networks. We introduce key algorithmic advances that all together accelerate synthetic vascular generation by more than 230 -fold compared to standard methods and enable their use in arbitrarily complex shapes through localized implicit functions. Furthermore, we provide techniques for joining vascular trees into watertight networks suitable for hemodynamic CFD and 3D fabrication. We demonstrate that organ-scale vascular network models can be generated in silico within minutes and can be used to perfuse engineered and anatomic models including a bioreactor, annulus, bi-ventricular heart, and gyrus. We further show that this flexible pipeline can be applied to two common modes of bioprinting with free-form reversible embedding of suspended hydrogels and writing into soft matter. Our synthetic vascular tree generation pipeline enables rapid, scalable vascular model generation and fluid analysis for bio-manufactured tissues necessary for future scale up and production.

8.
JACC CardioOncol ; 5(3): 298-315, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397084

RESUMEN

Background: Doxorubicin is an essential cancer treatment, but its usefulness is hampered by the occurrence of cardiotoxicity. Nevertheless, the pathophysiology underlying doxorubicin-induced cardiotoxicity and the respective molecular mechanisms are poorly understood. Recent studies have suggested involvement of cellular senescence. Objectives: The aims of this study were to establish whether senescence is present in patients with doxorubicin-induced cardiotoxicity and to investigate if this could be used as a potential treatment target. Methods: Biopsies from the left ventricles of patients with severe doxorubicin-induced cardiotoxicity were compared with control samples. Additionally, senescence-associated mechanisms were characterized in 3-dimensional dynamic engineered heart tissues (dyn-EHTs) and human pluripotent stem cell-derived cardiomyocytes. These were exposed to multiple, clinically relevant doses of doxorubicin to recapitulate patient treatment regimens. To prevent senescence, dyn-EHTs were cotreated with the senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol. Results: Senescence-related markers were significantly up-regulated in the left ventricles of patients with doxorubicin-induced cardiotoxicity. Treatment of dyn-EHTs resulted in up-regulation of similar senescence markers as seen in the patients, accompanied by tissue dilatation, decreased force generation, and increased troponin release. Treatment with senomorphic drugs led to decreased expression of senescence-associated markers, but this was not accompanied by improved function. Conclusions: Senescence was observed in the hearts of patients with severe doxorubicin-induced cardiotoxicity, and this phenotype can be modeled in vitro by exposing dyn-EHTs to repeated clinically relevant doses of doxorubicin. The senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol prevent senescence but do not result in functional improvements. These findings suggest that preventing senescence by using a senomorphic during doxorubicin administration might not prevent cardiotoxicity.

9.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945597

RESUMEN

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Asunto(s)
Hipoxia , Oxígeno , Humanos , Hipoxia de la Célula , Fenómenos Fisiológicos Respiratorios
10.
Sci Transl Med ; 14(666): eabo7047, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36223452

RESUMEN

Three-dimensional (3D) bioprinting is a transformative technology for engineering tissues for disease modeling and drug screening and building tissues and organs for repair, regeneration, and replacement. In this Viewpoint, we discuss technological advances in 3D bioprinting, key remaining challenges, and essential milestones toward clinical translation.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Bioimpresión/métodos , Evaluación Preclínica de Medicamentos , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido
11.
Sci Rep ; 12(1): 22652, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587043

RESUMEN

The application of 3D printing to biological research has provided the tissue engineering community with a method for organizing cells and biological materials into complex 3D structures. While many commercial bioprinting platforms exist, they are expensive, ranging from $5000 to over $1,000,000. This high cost of entry prevents many labs from incorporating 3D bioprinting into their research. Due to the open-source nature of desktop plastic 3D printers, an alternative option has been to convert low-cost plastic printers into bioprinters. Several open-source modifications have been described, but there remains a need for a user-friendly, step-by-step guide for converting a thermoplastic printer into a bioprinter using components with validated performance. Here we convert a low-cost 3D printer, the FlashForge Finder, into a bioprinter using our Replistruder 4 syringe pump and the Duet3D Duet 2 WiFi for total cost of less than $900. We demonstrate that the accuracy of the bioprinter's travel is better than 35 µm in all three axes and quantify fidelity by printing square lattice collagen scaffolds with average errors less than 2%. We also show high fidelity reproduction of clinical-imaging data by printing a scaffold of a human ear using collagen bioink. Finally, to maximize accessibility and customizability, all components we have designed for the bioprinter conversion are provided as open-source 3D models, along with instructions for further modifying the bioprinter for additional use cases, resulting in a comprehensive guide for the bioprinting field.


Asunto(s)
Bioimpresión , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Colágeno , Bioimpresión/métodos , Plásticos
12.
Methods Mol Biol ; 2485: 71-85, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35618899

RESUMEN

Here we describe a method to engineer a contractile ventricle-like chamber composed of human stem cell-derived cardiomyocytes using freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting. To do this, we print a support structure using a collagen type I ink and a cellular component using a high-density cell ink supplemented with fibrinogen. The gelation of the collagen and the fibrinogen into fibrin is initiated by pH change and enzymatic crosslinking, respectively. Fabrication of the ventricle-like chamber is completed in three distinct phases: (i) materials preparation, (ii) bioprinting, and (iii) tissue maturation. In this protocol, we describe the method to print the construct from a high-density cell ink composed of human stem cell-derived cardiomyocytes and primary fibroblasts (~300 × 106 cells/mL) using our open-source dual-extruder bioprinter. Additional details are provided on FRESH support preparation, bioink preparation, dual-extruder needle alignment, print parameter selection, and post-processing. This protocol can also be adapted by altering the 3D model design, cell concentration, or cell type to FRESH 3D bioprint other cardiac tissue constructs.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Fibrinógeno , Humanos , Hidrogeles/química , Miocitos Cardíacos , Impresión Tridimensional , Células Madre
13.
ACS Biomater Sci Eng ; 8(1): 303-313, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34860495

RESUMEN

Hydrogels are candidate building blocks in a wide range of biomaterial applications including soft and biohybrid robotics, microfluidics, and tissue engineering. Recent advances in embedded 3D printing have broadened the design space accessible with hydrogel additive manufacturing. Specifically, the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technique has enabled the fabrication of complex 3D structures using extremely soft hydrogels, e.g., alginate and collagen, by assembling hydrogels within a fugitive support bath. However, the low structural rigidity of FRESH printed hydrogels limits their applications, especially those that require operation in nonaqueous environments. In this study, we demonstrated long-fiber embedded hydrogel 3D printing using a multihead printing platform consisting of a custom-built fiber extruder and an open-source FRESH bioprinter with high embedding fidelity. Using this process, fibers were embedded in 3D printed hydrogel components to achieve significant structural reinforcement (e.g., tensile modulus improved from 56.78 ± 8.76 to 382.55 ± 25.29 kPa and tensile strength improved from 9.44 ± 2.28 to 45.05 ± 5.53 kPa). In addition, we demonstrated the versatility of this technique by using fibers of a wide range of sizes and material types and implementing different 2D and 3D embedding patterns, such as embedding a conical helix using electrochemically aligned collagen fiber via nonplanar printing. Moreover, the technique was implemented using low-cost material and is compatible with open-source software and hardware, which facilitates its adoption and modification for new research applications.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Alginatos , Materiales Biocompatibles , Ingeniería de Tejidos
14.
Biofabrication ; 15(1)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36195056

RESUMEN

As 3D bioprinting has grown as a fabrication technology, so too has the need for improved analytical methods to characterize engineered constructs. This is especially challenging for engineered tissues composed of hydrogels and cells, as these materials readily deform when trying to assess print fidelity and other properties non-destructively. Establishing that the 3D architecture of the bioprinted construct matches its intended anatomic design is critical given the importance of structure-function relationships in most tissue types. Here we report development of a multimaterial bioprinting platform with integrated optical coherence tomography forin situvolumetric imaging, error detection, and 3D reconstruction. We also report improvements to the freeform reversible embedding of suspended hydrogels bioprinting process through new collagen bioink compositions, gelatin microparticle support bath optical clearing, and optimized machine pathing. This enables quantitative 3D volumetric imaging with micron resolution over centimeter length scales, the ability to detect a range of print defect types within a 3D volume, and real-time imaging of the printing process at each print layer. These advances provide a comprehensive methodology for print quality assessment, paving the way toward the production and process control required for achieving regulatory approval and ultimately clinical translation of engineered tissues.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Tomografía de Coherencia Óptica , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Hidrogeles , Andamios del Tejido
15.
Sci Rep ; 12(1): 8120, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581253

RESUMEN

We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called "NeuronGrowth_IGAcollocation". Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks.


Asunto(s)
Neuritas , Tubulina (Proteína) , Axones/fisiología , Dendritas/fisiología , Neuritas/fisiología , Neurogénesis , Neuronas/fisiología
16.
Commun Mater ; 3(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-39175945

RESUMEN

Cell injection is a common clinical approach for therapeutic delivery into diseased and damaged tissues in order to achieve regeneration. However, cell retention, viability, and engraftment at the injection site have generally been poor, driving the need for improved approaches. Here, we developed a technique to shrink-wrap micropatterned islands of corneal endothelial cells in a basement membrane-like layer of extracellular matrix that enables the cells to maintain their cell-cell junctions and cytoskeletal structure while in suspension. These µMonolayers exhibited the ability to rapidly engraft into intact, high-density corneal endothelial monolayers in both in vitro and in vivo model systems. Importantly, the engrafted µMonolayers increased local cell density, something that the clinical-standard single cells in suspension failed to do. These results show that shrink-wrapping cells in extracellular matrix dramatically improves engraftment and provides a potential alternative to cornea transplant when low endothelial cell density is the cause of corneal blindness.

17.
Elife ; 112022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018887

RESUMEN

The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human-induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (µTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage µT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis.


Organs begin developing during the first few months of pregnancy, while the baby is still an embryo. These early stages of development are known as embryogenesis ­ a tightly organized process, during which the embryo forms different layers of stem cells. These cells can be activated to turn into a particular type of cell, such as a heart or a lung cell. The heart and lungs develop from different layers within the embryo, which must communicate with each other for the organs to form correctly. For example, chemical signals can be released from and travel between layers of the embryo, activating processes inside cells located in the different areas. In mouse models, chemical signals and cells travel between developing heart and lung, which helps both organs to form into the correct structure. But it is unclear how well the observations from mouse models translate to heart and lung development in humans. To find out more, Ng et al. developed a human model of heart and lung co-development during embryogenesis using human pluripotent stem cells. The laboratory-grown stem cells were treated with chemical signals, causing them to form different layers that developed into early forms of heart and lung cells. The cells were then transferred into a specific growing condition, where they arranged into three-dimensional structures termed microtissues. Ng et al. found that lung cells developed faster when grown in microtissues with accompanying developing heart cells compared to microtissues containing only developing lung cells. In addition, Ng et al. revealed that the co-developing heart and lung tissues automatically separate from each other during later stage, without the need for chemical signals. This human cell-based model of early forms of co-developing heart and lung cells may help provide researchers with new strategies to probe the underlying mechanisms of human heart and lung interaction during embryogenesis.


Asunto(s)
Diferenciación Celular , Corazón/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Pulmón/citología , Organoides/citología , Humanos , Pulmón/fisiología , Mesodermo , Transducción de Señal
18.
Adv Healthc Mater ; 11(24): e2200866, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063047

RESUMEN

Soft tissue injuries such as volumetric muscle loss (VML) are often too large to heal normally on their own, resulting in scar formation and functional deficits. Decellularized extracellular matrix (dECM) scaffolds placed into these wounds have shown the ability to modulate the immune response and drive constructive healing. This provides a potential solution for functional tissue regeneration, however, these acellular dECM scaffolds are challenging to fabricate into complex geometries. 3D bioprinting is uniquely positioned to address this, being able to create patient-specific scaffolds based on clinical 3D imaging data. Here, a process to use freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting and computed tomography (CT) imaging to build large volume, patient-specific dECM patches (≈12 × 8 × 2 cm) for implantation into canine VML wound models is developed. Quantitative analysis shows that these dECM patches are dimensionally accurate and conformally adapt to the surface of complex wounds. Finally, this approach is extended to a human VML injury to demonstrate the fabrication of clinically relevant dECM scaffolds with precise control over fiber alignment and micro-architecture. Together these advancements represent a step towards an improved, clinically translatable, patient-specific treatment for soft tissue defects from trauma, tumor resection, and other surgical procedures.


Asunto(s)
Bioimpresión , Traumatismos de los Tejidos Blandos , Humanos , Animales , Perros , Andamios del Tejido , Matriz Extracelular , Músculos , Cicatrización de Heridas , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos
19.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177947

RESUMEN

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Asunto(s)
Ingeniería , Organoides , Humanos , Ingeniería de Tejidos
20.
Nano Lett ; 10(6): 2184-91, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20486679

RESUMEN

Cells and tissues are self-organized within an extracellular matrix (ECM) composed of multifunctional, nano- to micrometer scale protein fibrils. We have developed a cell-free, surface-initiated assembly technique to rebuild this ECM structure in vitro. The matrix proteins fibronectin, laminin, fibrinogen, collagen type I, and collagen type IV are micropatterned onto thermosensitive surfaces as 1 to 10 nm thick, micrometer to centimeter wide networks, and released as flexible, free-standing nanofabrics. Independent control of microstructure and protein composition enables us to engineer the mechanical and chemical anisotropy. Fibronectin nanofabrics are highly extensible (>4-fold) and serve as scaffolds for engineering synchronously contracting, cardiac muscle; demonstrating biofunctionality comparable to cell-generated ECM.


Asunto(s)
Proteínas de la Matriz Extracelular/química , Nanotecnología , Sistema Libre de Células , Microscopía de Fuerza Atómica , Propiedades de Superficie , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA