Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 232(4): 1692-1702, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34482538

RESUMEN

Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O3 triggered a drop in whole-plant CO2 uptake. Within this early phase, O3 pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O3 induced cell death, systemic Ca2+ signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca2+ ) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.


Asunto(s)
Ozono , Calcio , Células del Mesófilo , Ozono/farmacología , Fotosíntesis , Hojas de la Planta , Estomas de Plantas
2.
Toxicol Appl Pharmacol ; 394: 114961, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209365

RESUMEN

INTRODUCTION: hERG block potency is widely used to calculate a drug's safety margin against its torsadogenic potential. Previous studies are confounded by use of different patch clamp electrophysiology protocols and a lack of statistical quantification of experimental variability. Since the new cardiac safety paradigm being discussed by the International Council for Harmonisation promotes a tighter integration of nonclinical and clinical data for torsadogenic risk assessment, a more systematic approach to estimate the hERG block potency and safety margin is needed. METHODS: A cross-industry study was performed to collect hERG data on 28 drugs with known torsadogenic risk using a standardized experimental protocol. A Bayesian hierarchical modeling (BHM) approach was used to assess the hERG block potency of these drugs by quantifying both the inter-site and intra-site variability. A modeling and simulation study was also done to evaluate protocol-dependent changes in hERG potency estimates. RESULTS: A systematic approach to estimate hERG block potency is established. The impact of choosing a safety margin threshold on torsadogenic risk evaluation is explored based on the posterior distributions of hERG potency estimated by this method. The modeling and simulation results suggest any potency estimate is specific to the protocol used. DISCUSSION: This methodology can estimate hERG block potency specific to a given voltage protocol. The relationship between safety margin thresholds and torsadogenic risk predictivity suggests the threshold should be tailored to each specific context of use, and safety margin evaluation may need to be integrated with other information to form a more comprehensive risk assessment.


Asunto(s)
Canal de Potasio ERG1/antagonistas & inhibidores , Medición de Riesgo/métodos , Torsades de Pointes/inducido químicamente , Teorema de Bayes , Simulación por Computador , Humanos , Modelos Biológicos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Seguridad , Torsades de Pointes/fisiopatología
3.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822771

RESUMEN

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotoxinas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Guías de Práctica Clínica como Asunto/normas , Estudios de Validación como Asunto , Células Madre Adultas/patología , Células Madre Adultas/fisiología , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/patología
5.
Comput Methods Programs Biomed ; 254: 108293, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936153

RESUMEN

BACKGROUND AND OBJECTIVE: Assessment of drug cardiotoxicity is critical in the development of new compounds and modeling of drug-binding dynamics to hERG can improve early cardiotoxicity assessment. We previously developed a methodology to generate Markovian models reproducing preferential state-dependent binding properties, trapping dynamics and the onset of IKr block using simple voltage clamp protocols. Here, we test this methodology with real IKr blockers and investigate the impact of drug dynamics on action potential prolongation. METHODS: Experiments were performed on HEK cells stably transfected with hERG and using the Nanion SyncroPatch 384i. Three protocols, P-80, P0 and P 40, were applied to obtain the experimental data from the drugs and the Markovian models were generated using our pipeline. The corresponding static models were also generated and a modified version of the O´Hara-Rudy action potential model was used to simulate the action potential duration. RESULTS: The experimental Hill plots and the onset of IKr block of ten compounds were obtained using our voltage clamp protocols and the models generated successfully mimicked these experimental data, unlike the CiPA dynamic models. Marked differences in APD prolongation were observed when drug effects were simulated using the dynamic models and the static models. CONCLUSIONS: These new dynamic models of ten well-known IKr blockers constitute a validation of our methodology to model dynamic drug-hERG channel interactions and highlight the importance of state-dependent binding, trapping dynamics and the time-course of IKr block to assess drug effects even at the steady-state.


Asunto(s)
Potenciales de Acción , Humanos , Potenciales de Acción/efectos de los fármacos , Células HEK293 , Canal de Potasio ERG1/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Técnicas de Placa-Clamp , Unión Proteica , Bloqueadores de los Canales de Potasio/farmacología
6.
J Pharmacol Toxicol Methods ; 128: 107529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38857637

RESUMEN

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations. As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening. Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.


Asunto(s)
Atrios Cardíacos , Ventrículos Cardíacos , Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/citología , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Desarrollo de Medicamentos/métodos , Canales Iónicos/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Carbacol/farmacología , Sistemas Microfisiológicos
7.
J Vis Exp ; (188)2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342136

RESUMEN

Cardiac contractility assessment is of immense importance for the development of new therapeutics and their safe transition into clinical stages. While human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold promise to serve as a human-relevant model in preclinical phases of drug discovery and safety pharmacology, their maturity is still controversial in the scientific community and under constant development. We present a hybrid contractility and impedance/extracellular field potential (EFP) technology, adding significant pro-maturation features to an industry-standard 96-well platform. The impedance/EFP system monitors cellular functionality in real-time. Besides the beat rate of contractile cells, the electrical impedance spectroscopy readouts detect compound-induced morphological changes like cell density and integrity of the cellular monolayer. In the other component of the hybrid cell analysis system, the cells are cultured on bio-compliant membranes that mimic the mechanical environment of real heart tissue. This physiological environment supports the maturation of hiPSC-CMs in vitro, leading to more adult-like contractile responses including positive inotropic effects after treatment with isoproterenol, S-Bay K8644, or omecamtiv mecarbil. Parameters such as the amplitude of contraction force (mN/mm2) and beat duration also reveal downstream effects of compounds with influence on electrophysiological properties and calcium handling. The hybrid system provides the ideal tool for holistic cell analysis, allowing preclinical cardiac risk assessment beyond the current perspectives of human-relevant cell-based assays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Adulto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Contracción Miocárdica , Fenómenos Electrofisiológicos , Células Híbridas , Células Cultivadas
8.
Mol Hum Reprod ; 17(10): 637-52, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21565864

RESUMEN

Trophoblast cell (CTB) invasion into the maternal endometrium plays a crucial role during human embryo implantation and placentation. As for all invasive cell types, the ability of CTB to infiltrate the uterine wall is facilitated by the activity of matrix metalloproteinases (MMPs), which is regulated by tissue inhibitors of MMPs (TIMPs). There is evidence for the expression of several MMPs and TIMPs in decidua. However, published data are limited. Therefore, to set a foundation for future research, we screened a panel of healthy human deciduas obtained during first, second and third trimester of pregnancy in addition to isolated decidual cell populations for the expression of all known human MMPs and TIMPs by RT-PCR, western blot and immunohistochemistry. In the decidual samples, we detected almost all MMPs and all four TIMPs at mRNA level. While the expression of proMMP-3 and active MMP-13 and -23 was down-regulated in the course of pregnancy, the pro forms of MMP-8, -19 and -23, active MMP-9, -10, -12, -15, -16, -26 and -28, and pro- and active MMP-14 increased towards the end of gestation. All MMPs and TIMPs were expressed in uterine natural killer cells, decidual fibroblasts and/or trophoblasts, with the exception of MMP-20 and -25. In summary, a remarkably broad spectrum of MMPs was expressed at the human feto-maternal interface, reflecting the highly invasive and remodelling effect on placenta formation. It can be speculated that expression of MMPs correlates with the invasive potential of CTBs together with a crucial role in activation of labour at term.


Asunto(s)
Decidua/enzimología , Metaloproteinasas de la Matriz/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Trofoblastos/enzimología , Decidua/citología , Decidua/metabolismo , Implantación del Embrión , Femenino , Fibroblastos/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Placenta/metabolismo , Placentación/fisiología , Embarazo , ARN Mensajero/biosíntesis , Trofoblastos/metabolismo
9.
J Pharmacol Toxicol Methods ; 112: 107125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34500078

RESUMEN

INTRODUCTION: For reliable identification of cardiac safety risk, compounds should be screened for activity on cardiac ion channels in addition to hERG, including NaV1.5 and CaV1.2. We identified different parameters that might affect IC50s of compounds on NaV1.5 peak and late currents recorded using automated patch clamp (APC) and suggest outlines for best practices. METHODS: APC instruments SyncroPatch 384 and Patchliner were used to record NaV1.5 peak and late current. Up to 24 CiPA compounds were used to investigate effects of voltage protocol, holding potential (-80 mV or - 95 mV) and temperature (23 ± 1 °C or 36 ± 1 °C) on IC50 values on hNaV1.5 overexpressed in HEK or CHO cells either as frozen cells or running cultures. RESULTS: The IC50s of 18 compounds on the NaV1.5 peak current recorded on the SyncroPatch 384 using the CiPA step-ramp protocol correlated well with the literature. The use of frozen or cultured cells did not affect IC50s but voltage protocol and holding potential did cause differences in IC50 values. Temperature can affect Vhalf of inactivation and also compound potency. A compound incubation time of 5-6 min was sufficient for most compounds, however slow acting compounds such as terfenadine required longer to reach maximum effect. DISCUSSION: We conclude that holding potential, voltage protocol and temperature can affect IC50 values and recommend the use of the CiPA step-ramp protocol at physiological temperature to record NaV1.5 peak and late currents for cardiac safety. Further recommendations include: a minimum compound incubation time of 5 min, a replicate number of 4 and the use of positive and negative controls for reliable IC50s.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Animales , Células CHO , Trastorno del Sistema de Conducción Cardíaco/diagnóstico , Cricetinae , Cricetulus , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp
10.
BMC Cancer ; 10: 553, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20942921

RESUMEN

BACKGROUND: Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. METHODS: In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. RESULTS: We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). CONCLUSIONS: Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments.


Asunto(s)
Coriocarcinoma/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Metaloproteinasas de la Matriz/biosíntesis , Neoplasias Ováricas/metabolismo , Teratocarcinoma/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Neoplasias Uterinas/metabolismo , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Células HeLa , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia
11.
J Pharmacol Toxicol Methods ; 105: 106892, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32629160

RESUMEN

INDUCTION: Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects. METHODS: hiPSC-CMs were cultured in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment. Cardiomyocyte contractility was measured contact-free by application of capacitive displacement sensing of the cell-membrane biohybrids. Acute effects of positive inotropic compounds with distinct mechanisms of action were examined. Additionally, cardiotoxic effects of tyrosine kinase inhibitors and anthracyclines were repetitively examined during repeated exposure to drug concentrations for up to 5 days. RESULTS: hiPSC-CMs grown on biomimetic membranes displayed increased contractility responses to isoproterenol, S-Bay K8644 and omecamtiv mecarbil without the need for additional stimulation. Tyrosine kinase inhibitor erlotinib, vandetanib, nilotinib, gefitinib, A-674563 as well as anthracycline idarubicin showed the expected cardiotoxic effects, including negative inotropy and induction of proarrhythmic events. DISCUSSION: We conclude that the FLEXcyte 96 system is a reliable high throughput tool for invitro cardiac contractility research, providing the user with data obtained under physiological conditions which resemble the native environment of human heart tissue. We showed that the results obtained for both acute and sub-chronic compound administration are consistent with the respective physiological responses in humans.


Asunto(s)
Cardiotoxicidad/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Antraciclinas/efectos adversos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/efectos adversos
12.
J Pharmacol Toxicol Methods ; 105: 106884, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32565325

RESUMEN

INTRODUCTION: Screening compounds for activity on the hERG channel using patch clamp is a crucial part of safety testing. Automated patch clamp (APC) is becoming widely accepted as an alternative to manual patch clamp in order to increase throughput whilst maintaining data quality. In order to standardize APC experiments, we have investigated the effects on IC50 values under different conditions using several devices across multiple sites. METHODS: APC instruments SyncroPatch 384i, SyncroPatch 384PE and Patchliner, were used to record hERG expressed in HEK or CHO cells. Up to 27 CiPA compounds were used to investigate effects of voltage protocol, incubation time, labware and time between compound preparation and experiment on IC50 values. RESULTS: All IC50 values of 21 compounds recorded on the SyncroPatch 384PE correlated well with IC50 values from the literature (Kramer et al., 2013) regardless of voltage protocol or labware, when compounds were used immediately after preparation, but potency of astemizole decreased if prepared in Teflon or polypropylene (PP) compound plates 2-3 h prior to experiments. Slow acting compounds such as dofetilide, astemizole, and terfenadine required extended incubation times of at least 6 min to reach steady state and therefore, stable IC50 values. DISCUSSION: Assessing the influence of different experimental conditions on hERG assay reliability, we conclude that either the step-ramp protocol recommended by CiPA or a standard 2-s step-pulse protocol can be used to record hERG; a minimum incubation time of 5 min should be used and although glass, Teflon, PP or polystyrene (PS) compound plates can be used for experiments, caution should be taken if using Teflon, PS or PP vessels as some adsorption can occur if experiments are not performed immediately after preparation. Our recommendations are not limited to the APC devices described in this report, but could also be extended to other APC devices.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Benchmarking/métodos , Fármacos Cardiovasculares/farmacología , Descubrimiento de Drogas/métodos , Corazón/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Animales , Arritmias Cardíacas/metabolismo , Astemizol/farmacología , Células CHO , Calibración , Fármacos Cardiovasculares/química , Línea Celular , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Fenetilaminas/farmacología , Polipropilenos/química , Politetrafluoroetileno/química , Estándares de Referencia , Reproducibilidad de los Resultados , Sulfonamidas/farmacología , Terfenadina/farmacología
14.
Sci Rep ; 10(1): 5627, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32221320

RESUMEN

Automated patch clamp (APC) instruments enable efficient evaluation of electrophysiologic effects of drugs on human cardiac currents in heterologous expression systems. Differences in experimental protocols, instruments, and dissimilar site procedures affect the variability of IC50 values characterizing drug block potency. This impacts the utility of APC platforms for assessing a drug's cardiac safety margin. We determined variability of APC data from multiple sites that measured blocking potency of 12 blinded drugs (with different levels of proarrhythmic risk) against four human cardiac currents (hERG [IKr], hCav1.2 [L-Type ICa], peak hNav1.5, [Peak INa], late hNav1.5 [Late INa]) with recommended protocols (to minimize variance) using five APC platforms across 17 sites. IC50 variability (25/75 percentiles) differed for drugs and currents (e.g., 10.4-fold for dofetilide block of hERG current and 4-fold for mexiletine block of hNav1.5 current). Within-platform variance predominated for 4 of 12 hERG blocking drugs and 4 of 6 hNav1.5 blocking drugs. hERG and hNav1.5 block. Bland-Altman plots depicted varying agreement across APC platforms. A follow-up survey suggested multiple sources of experimental variability that could be further minimized by stricter adherence to standard protocols. Adoption of best practices would ensure less variable APC datasets and improved safety margins and proarrhythmic risk assessments.

15.
J Pharmacol Toxicol Methods ; 105: 106890, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32574700

RESUMEN

INTRODUCTION: In response to the ongoing shift of the regulatory cardiac safety paradigm, a recent White Paper proposed general principles for developing and implementing proarrhythmia risk prediction models. These principles included development strategies to validate models, and implementation strategies to ensure a model developed by one lab can be used by other labs in a consistent manner in the presence of lab-to-lab experimental variability. While the development strategies were illustrated through the validation of the model under the Comprehensive In vitro Proarrhythmia Assay (CiPA), the implementation strategies have not been adopted yet. METHODS: The proposed implementation strategies were applied to the CiPA model by performing a sensitivity analysis to identify a subset of calibration drugs that were most critical in determining the classification thresholds for proarrhythmia risk prediction. RESULTS: The selected calibration drugs were able to recapitulate classification thresholds close to those calculated from the full list of CiPA drugs. Using an illustrative dataset it was shown that a new lab could use these calibration drugs to establish its own classification thresholds (lab-specific calibration), and verify that the model prediction accuracy in the new lab is comparable to that in the original lab where the model was developed (lab-specific validation). DISCUSSION: This work used the CiPA model as an example to illustrate how to adopt the proposed model implementation strategies to select calibration drugs and perform lab-specific calibration and lab-specific validation. Generic in nature, these strategies could be generally applied to different proarrhythmia risk prediction models using various experimental systems under the new paradigm.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Bioensayo/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Calibración , Evaluación Preclínica de Medicamentos/métodos , Electrocardiografía/métodos , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-29940218

RESUMEN

INTRODUCTION: Since 2005 the S7B and E14 guidances from ICH and FDA have been in place to assess a potential drug candidate's ability to cause long QT syndrome. To refine these guidelines, the FDA proposed the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, where the assessment of drug effects on cardiac repolarization was one subject of investigation. Within the myocyte validation study, effects of pharmaceutical compounds on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were assessed and this article will focus on the evaluation of the proarrhythmic potential of 23 blinded drugs in four hiPSC-CM cell lines. METHODS: Experiments were performed on the CardioExcyte 96 at different sites. A combined readout of contractility (via impedance) and electrophysiology endpoints (field potentials) was performed. RESULTS: Our data demonstrates that hERG blockers such as dofetilide and further high risk categorized compounds prolong the field potential duration. Arrhythmia were detected in both impedance as well as field potential recordings. Intermediate risk compounds induced arrhythmia in almost all cases at the highest dose. In the case of low risk compounds, either a decrease in FPDmax was observed, or not a significant change from pre-addition control values. DISCUSSION: With exceptions, hiPSC-CMs are sensitive and exhibit at least 10% delayed or shortened repolarization from pre-addition values and arrhythmia after drug application and thus can provide predictive cardiac electrophysiology data. The baseline electrophysiological parameters vary between iPS cells from different sources, therefore positive and negative control recordings are recommended.


Asunto(s)
Antiarrítmicos/farmacología , Impedancia Eléctrica , Acoplamiento Excitación-Contracción/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Línea Celular , Células Cultivadas , Disopiramida/farmacología , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Acoplamiento Excitación-Contracción/fisiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Fenetilaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Sulfonamidas/farmacología
17.
Br J Pharmacol ; 175(14): 3007-3020, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29722437

RESUMEN

BACKGROUND AND PURPOSE: Oxycodone is a potent semi-synthetic opioid that is commonly used for the treatment of severe acute and chronic pain. However, treatment with oxycodone can lead to cardiac electrical changes, such as long QT syndrome, potentially inducing sudden cardiac arrest. Here, we investigate whether the cardiac side effects of oxycodone can be explained by modulation of the cardiac Nav 1.5 sodium channel. EXPERIMENTAL APPROACH: Heterologously expressed human Nav 1.5, Nav 1.7 (HEK293 cells) or Nav 1.8 channels (mouse N1E-115 cells) were used for whole-cell patch-clamp electrophysiology. A variety of voltage-clamp protocols were used to test the effect of oxycodone on different channel gating modalities. Human stem cell-derived cardiomyocytes were used to measure the effect of oxycodone on cardiomyocyte beating. KEY RESULTS: Oxycodone inhibited Nav 1.5 channels, concentration and use-dependently, with an IC50 of 483 µM. In addition, oxycodone slows recovery of Nav 1.5 channels from fast inactivation and increases slow inactivation. At high concentrations, these effects lead to a reduced beat rate in cardiomyocytes and to arrhythmia. In contrast, no such effects could be observed on Nav 1.7 or Nav 1.8 channels. CONCLUSIONS AND IMPLICATIONS: Oxycodone leads to an accumulation of Nav 1.5 channels in inactivated states, with a slow time course. Although the concentrations needed to elicit cardiac arrhythmias in vitro are relatively high, some patients under long-term treatment with oxycodone as well as drug abusers and addicts might suffer from severe cardiac side effects induced by the slowly developing effects of oxycodone on Nav 1.5 channels.


Asunto(s)
Analgésicos Opioides/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Oxicodona/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Línea Celular , Humanos , Ratones , Miocitos Cardíacos/fisiología
18.
Expert Opin Drug Discov ; 13(3): 269-277, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29343120

RESUMEN

INTRODUCTION: Automated patch clamp (APC) devices have become commonplace in many industrial and academic labs. Their ease-of-use and flexibility have ensured that users can perform routine screening experiments and complex kinetic experiments on the same device without the need for months of training and experience. APC devices are being developed to increase throughput and flexibility. Areas covered: Experimental options such as temperature control, internal solution exchange and current clamp have been available on some APC devices for some time, and are being introduced on other devices. A comprehensive review of the literature pertaining to these features for the Patchliner, QPatch and Qube and data for these features for the SyncroPatch 384/768PE, is given. In addition, novel features such as dynamic clamp on the Patchliner and light stimulation of action potentials using channelrhodosin-2 is discussed. Expert opinion: APC devices will continue to play an important role in drug discovery. The instruments will be continually developed to meet the needs of HTS laboratories and for basic research. The use of stem cells and recordings in current clamp mode will increase, as will the development of complex add-ons such as dynamic clamp and optical stimulation on high throughput devices.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Canales Iónicos/metabolismo , Animales , Diseño de Fármacos , Humanos , Técnicas de Placa-Clamp/métodos
19.
Front Physiol ; 8: 1094, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29403387

RESUMEN

An important aspect of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) proposal is the use of human stem cell-derived cardiomyocytes and the confirmation of their predictive power in drug safety assays. The benefits of this cell source are clear; drugs can be tested in vitro on human cardiomyocytes, with patient-specific genotypes if needed, and differentiation efficiencies are generally excellent, resulting in a virtually limitless supply of cardiomyocytes. There are, however, several challenges that will have to be surmounted before successful establishment of hSC-CMs as an all-round predictive model for drug safety assays. An important factor is the relative electrophysiological immaturity of hSC-CMs, which limits arrhythmic responses to unsafe drugs that are pro-arrhythmic in humans. Potentially, immaturity may be improved functionally by creation of hybrid models, in which the dynamic clamp technique joins simulations of lacking cardiac ion channels (e.g., IK1) with hSC-CMs in real-time during patch clamp experiments. This approach has been used successfully in manual patch clamp experiments, but throughput is low. In this study, we combined dynamic clamp with automated patch clamp of iPSC-CMs in current clamp mode, and demonstrate that IK1 conductance can be added to iPSC-CMs on an automated patch clamp platform, resulting in an improved electrophysiological maturity.

20.
J Pharmacol Toxicol Methods ; 81: 223-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27084108

RESUMEN

INTRODUCTION: While extracellular field potential (EFP) recordings using multi-electrode arrays (MEAs) are a well-established technique for monitoring changes in cardiac and neuronal function, impedance is a relatively unexploited technology. The combination of EFP, impedance and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has important implications for safety pharmacology as functional information about contraction and field potentials can be gleaned from human cardiomyocytes in a beating monolayer. The main objectives of this study were to demonstrate, using a range of different compounds, that drug effects on contraction and electrophysiology can be detected using a beating monolayer of hiPSC-CMs on the CardioExcyte 96. METHODS: hiPSC-CMs were grown as a monolayer on NSP-96 plates for the CardioExcyte 96 (Nanion Technologies) and recordings were made in combined EFP and impedance mode at physiological temperature. The effect of the hERG blockers, E4031 and dofetilide, hERG trafficking inhibitor, pentamidine, ß-adrenergic receptor agonist, isoproterenol, and calcium channel blocker, nifedipine, was tested on the EFP and impedance signals. RESULTS: Combined impedance and EFP measurements were made from hiPSC-CMs using the CardioExcyte 96 (Nanion Technologies). E4031 and dofetilide, known to cause arrhythmia and Torsades de Pointes (TdP) in humans, decreased beat rate in impedance and EFP modes. Early afterdepolarization (EAD)-like events, an in vitro marker of TdP, could also be detected using this system. Isoproterenol and nifedipine caused an increase in beat rate. A long-term study (over 30h) of pentamidine, a hERG trafficking inhibitor, showed a concentration and time-dependent effect of pentamidine. DISCUSSION: In the light of the new Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative to improve guidelines and standardize assays and protocols, the use of EFP and impedance measurements from hiPSCs may become critical in determining the proarrhythmic risk of potential drug candidates. The combination of EFP offering information about cardiac electrophysiology, and impedance, providing information about contractility from the same area of a synchronously beating monolayer of human cardiomyocytes in a 96-well plate format has important implications for future cardiac safety testing.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Cardiografía de Impedancia/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Antagonistas Adrenérgicos beta/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/fisiopatología , Bloqueadores de los Canales de Calcio/farmacología , Técnicas de Cultivo de Célula , Canales de Potasio Éter-A-Go-Go/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Torsades de Pointes/inducido químicamente , Torsades de Pointes/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA