Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 50(15): 8375-84, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385064

RESUMEN

On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.


Asunto(s)
Electricidad , Modelos Teóricos , Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Material Particulado , Reproducibilidad de los Resultados
2.
Environ Sci Technol ; 49(7): 4696-704, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25705922

RESUMEN

Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively.


Asunto(s)
Material Particulado/análisis , Centrales Eléctricas/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Maryland , Modelos Teóricos , New Jersey , Ozono/análisis , Pennsylvania , Estados Unidos , United States Environmental Protection Agency
3.
Artículo en Inglés | MEDLINE | ID: mdl-31130686

RESUMEN

In this paper, we present an analytical framework to establish a closed-form relationship between electricity generation expansion planning decisions and the resulting negative health externalities. Typical electricity generation expansion planning models determine the optimal technology-capacity-investment strategy that minimizes total investment costs as well as fixed and variable operation and maintenance costs. However, the relationship between these long-term planning decisions and the associated health externalities is highly stochastic and nonlinear, and it is computationally expensive to evaluate. Thus, we developed a closed-form metamodel by executing computer-based experiments of a generation expansion planning model, and we analyzed the resulting model outputs in a United States Environmental Protection Agency (EPA) screening tool that approximates the associated human health externalities. Procedural guidance to verify the accuracy and to select key metamodel parameters to enhance its prediction capability is presented. Specifically, the metamodel presented in this paper can predict the resulting health damages of long-term power grid expansion decisions, thus, enabling researchers and policy makers to quickly assess the health implications of power grid expansion decisions with a high degree of certainty.


Asunto(s)
Electricidad/efectos adversos , Modelos Teóricos , Humanos , Tecnología , Estados Unidos , United States Environmental Protection Agency
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA