Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Angew Chem Int Ed Engl ; 63(8): e202312473, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-37987465

RESUMEN

Ruddlesden-Popper-type oxides exhibit remarkable chemical stability in comparison to perovskite oxides. However, they display lower oxygen permeability. We present an approach to overcome this trade-off by leveraging the anisotropic properties of Nd2 NiO4+δ . Its (a,b)-plane, having oxygen diffusion coefficient and surface exchange coefficient several orders of magnitude higher than its c-axis, can be aligned perpendicular to the gradient of oxygen partial pressure by a magnetic field (0.81 T). A stable and high oxygen flux of 1.40 mL min-1 cm-2 was achieved for at least 120 h at 1223 K by a textured asymmetric disk membrane with 1.0 mm thickness under the pure CO2 sweeping. Its excellent operational stability was also verified even at 1023 K in pure CO2 . These findings highlight the significant enhancement in oxygen permeation membrane performance achievable by adjusting the grain orientation. Consequently, Nd2 NiO4+δ emerges as a promising candidate for industrial applications in air separation, syngas production, and CO2 capture under harsh conditions.

2.
Entropy (Basel) ; 24(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35455142

RESUMEN

The term thermal capacity appears to suggest a storable thermal quantity. However, this claim is not redeemed when thermal capacity is projected onto "heat", which, like all energy forms, exits only in transit and is not a part of internal energy. The storable thermal quantity is entropy, and entropy capacity is a well-defined physical coefficient which has the advantage of being a susceptibility. The inverse of the entropy capacity relates the response of the system (change of temperature) to a stimulus (change of entropy) such as the fluid level responses to a change in amount of fluid contained in a vessel. Frequently, entropy capacity has been used implicitly, which is clarified in examples of the low-temperature analysis of phononic and electronic contributions to the thermal capacity of solids. Generally, entropy capacity is used in the estimation of the entropy of a solid. Implicitly, the thermoelectric figure of merit refers to entropy capacity. The advantage of the explicit use of entropy capacity comes with a descriptive fundamental understanding of the thermal behaviour of solids, which is made clear by the examples of the Debye model of phonons in solids, the latest thermochemical modelling of carbon allotropes (diamond and graphite) and not least caloric materials. An electrocaloric cycle of barium titanate close to its paraelectric-ferroelectric phase transition is analysed by means of entropy capacity. Entropy capacity is a key to intuitively understanding thermal processes.

3.
Entropy (Basel) ; 22(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33286574

RESUMEN

The basic principles of thermoelectrics rely on the coupling of entropy and electric charge. However, the long-standing dispute of energetics versus entropy has long paralysed the field. Herein, it is shown that treating entropy and electric charge in a symmetric manner enables a simple transport equation to be obtained and the power conversion and its efficiency to be deduced for a single thermoelectric material apart from a device. The material's performance in both generator mode (thermo-electric) and entropy pump mode (electro-thermal) are discussed on a single voltage-electrical current curve, which is presented in a generalized manner by relating it to the electrically open-circuit voltage and the electrically closed-circuited electrical current. The electrical and thermal power in entropy pump mode are related to the maximum electrical power in generator mode, which depends on the material's power factor. Particular working points on the material's voltage-electrical current curve are deduced, namely, the electrical open circuit, electrical short circuit, maximum electrical power, maximum power conversion efficiency, and entropy conductivity inversion. Optimizing a thermoelectric material for different working points is discussed with respect to its figure-of-merit z T and power factor. The importance of the results to state-of-the-art and emerging materials is emphasized.

4.
Entropy (Basel) ; 22(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33287000

RESUMEN

Besides the material research in the field of thermoelectrics, the way from a material to a functional thermoelectric (TE) module comes alongside additional challenges. Thus, comprehension and optimization of the properties and the design of a TE module are important tasks. In this work, different geometry optimization strategies to reach maximum power output or maximum conversion efficiency are applied and the resulting performances of various modules and respective materials are analyzed. A Bi2Te3-based module, a half-Heusler-based module, and an oxide-based module are characterized via FEM simulations. By this, a deviation of optimum power output and optimum conversion efficiency in dependence of the diversity of thermoelectric materials is found. Additionally, for all modules, the respective fluxes of entropy and charge as well as the corresponding fluxes of thermal and electrical energy within the thermolegs are shown. The full understanding and enhancement of the performance of a TE module may be further improved.

5.
Angew Chem Int Ed Engl ; 59(11): 4365-4369, 2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-31893511

RESUMEN

Metal-organic framework (MOF) glasses are promising candidates for membrane fabrication due to their significant porosity, the ease of processing, and most notably, the potential to eliminate the grain boundary that is unavoidable for polycrystalline MOF membranes. Herein, we developed a ZIF-62 MOF glass membrane and exploited its intrinsic gas-separation properties. The MOF glass membrane was fabricated by melt-quenching treatment of an in situ solvothermally synthesized polycrystalline ZIF-62 MOF membrane on a porous ceramic alumina support. The molten ZIF-62 phase penetrated into the nanopores of the support and eliminated the formation of intercrystalline defects in the resultant glass membrane. The molecular sieving ability of the MOF membrane is remarkably enhanced via vitrification. The separation factors of the MOF glass membrane for H2 /CH4 , CO2 /N2 and CO2 /CH4 mixtures are 50.7, 34.5, and 36.6, respectively, far exceeding the Robeson upper bounds.

6.
Angew Chem Int Ed Engl ; 59(49): 21909-21914, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844513

RESUMEN

ZIF-8 membranes have emerged as the most promising candidate for propylene/propane (C3 H6 /C3 H8 ) separation through its precise molecular sieving characteristics. The poor reproducibility and durability, and high cost, thus far hinder the scalable synthesis and industrial application of ZIF-8 membranes. Herein, we report a semi-solid process featuring ultrafast and high-yield synthesis, and outstanding scalability for reproducible fabrication of ZIF-8 membranes. The membranes show excellent C3 H6 /C3 H8 separation performance in a wide temperature and pressure range, and remarkable stability over 6 months. The ZIF-8 membrane features dimethylacetamide entrapped ZIF-8 crystals retaining the same diffusion characteristics but offering enhanced adsorptive selectivity for C3 H6 /C3 H8 . The ZIF-8 membrane was prepared on a commercial flat-sheet ceramic substrate. A prototypical plate-and-frame membrane module with an effective membrane area of about 300 cm2 was used for efficient C3 H6 /C3 H8 separation.

7.
J Am Chem Soc ; 140(32): 10094-10098, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30021065

RESUMEN

Covalent organic frameworks (COFs) have been proposed as alternative candidates for molecular sieving membranes due to their chemical stability. However, developing COF membranes with narrowed apertures close to the size of common gas molecules is a crucial task for selective gas separation. Herein, we demonstrate a new type of a two-dimensional layered-stacking COF-COF composite membrane in bilayer geometry synthesized on a porous support by successively regulating the growth of imine-based COF-LZU1 and azine-based ACOF-1 layers via a temperature-swing solvothermal approach. The resultant COF-LZU1-ACOF-1 bilayer membrane has much higher separation selectivity for H2/CO2, H2/N2, and H2/CH4 gas mixtures than the individual COF-LZU1 and ACOF-1 membranes due to the formation of interlaced pore networks, and the overall performance surpasses the Robeson upper bounds. The COF-LZU1-ACOF-1 bilayer membrane also shows high thermal and long-time stabilities.

8.
Angew Chem Int Ed Engl ; 56(26): 7584-7588, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28467659

RESUMEN

Perovskite oxides have been under intense investigation as promising candidates for devices in the field of energy conversion and storage. Unfortunately, these perovskites are probably subjected to a frequent performance loss caused by phase transition. A phase-stabilization approach via interdiffusional tailoring is identified in perovskite-based composites. As an example, a phase-stabilized perovskite-fluorite composite material with both components possessing cubic symmetry was obtained by an appropriate one-pot strategy. These findings render possible to develop a high-performance and extremely stable dual-phase oxygen-transporting membrane for intermediate-temperature air separation as well as syngas production, which also opens up numerous opportunities to overcome the phase-transition-induced performance degradation in other systems.

9.
Angew Chem Int Ed Engl ; 56(27): 7760-7763, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28504418

RESUMEN

Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp2 hybridized carbon sheets as well as sp3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m3 (STP)/(m2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide.

10.
Angew Chem Int Ed Engl ; 55(30): 8648-51, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27244216

RESUMEN

Water splitting coupled with partial oxidation of methane (POM) using an oxygen-transporting membrane (OTM) would be a potentially ideal way to produce high-purity hydrogen as well as syngas. Over the past decades, substantial efforts have been devoted to the development of supported membranes with appropriate configurations to achieve considerable performance improvements. Herein, we describe the design of a novel symmetrical membrane reactor with a sandwich-like structure, whereby a largescale production (>10 mL min(-1) cm(-2) ) of hydrogen and syngas can be obtained simultaneously on opposite sides of the OTM. Furthermore, this special membrane reactor could regenerate the coke-deactivated catalyst in situ by water steam in a single unit. These results represent an important first step in the development of membrane separation technologies for the integration of multiple chemical processes.

11.
Angew Chem Int Ed Engl ; 55(36): 10895-8, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27461966

RESUMEN

A novel concept for the preparation of multiphase composite ceramics based on demixing of a single ceramic precursor has been developed and used for the synthesis of a dual-phase H2 -permeable ceramic membrane. The precursor BaCe0.5 Fe0.5 O3-δ decomposes on calcination at 1370 °C for 10 h into two thermodynamically stable oxides with perovskite structures: the cerium-rich oxide BaCe0.85 Fe0.15 O3-δ (BCF8515) and the iron-rich oxide BaCe0.15 Fe0.85 O3-δ (BCF1585), 50 mol % each. In the resulting dual-phase material, the orthorhombic perovskite BCF8515 acts as the main proton conductor and the cubic perovskite BCF1585 as the main electron conductor. The dual-phase membrane shows an extremely high H2 permeation flux of 0.76 mL min(-1)  cm(-2) at 950 °C with 1.0 mm thickness. This auto-demixing concept should be applicable to the synthesis of other ionic-electronic conducting ceramics.

12.
Angew Chem Int Ed Engl ; 54(16): 4847-50, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25706102

RESUMEN

To combine good chemical stability and high oxygen permeability, a mixed ionic-electronic conducting (MIEC) 75 wt% Ce(0.85)Gd(0.1)Cu(0.05)O(2-δ)-25 wt% La(0.6)Ca(0.4)FeO(3-δ)(CGCO-LCF) dual-phase membrane based on a MIEC-MIEC composite has been developed. Copper doping into Ce(0.9)Gd(0.1)O(2-δ) (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2-10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO-LCF one-pot dual-phase membrane. A high oxygen permeation flux of 0.70 mL min(-1) cm(-2) is obtained by the CGCO-LCF one-pot dual-phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long-term operation.

13.
Membranes (Basel) ; 13(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37999361

RESUMEN

La0.6Ca0.4Co1-xFexO3-d in its various compositions has proven to be an excellent CO2-resistant oxygen transport membrane that can be used in plasma-assisted CO2 conversion. With the goal of incorporating green hydrogen into the CO2 conversion process, this work takes a step further by investigating the compatibility of La0.6Ca0.4Co1-xFexO3-d membranes with hydrogen fed into the plasma. This will enable plasma-assisted conversion of the carbon monoxide produced in the CO2 reduction process into green fuels, like methanol. This requires the La0.6Ca0.4Co1-xFexO3-d membranes to be tolerant towards reducing conditions of hydrogen. The hydrogen tolerance of La0.6Ca0.4Co1-xFexO3-d (x = 0.8) was studied in detail. A faster and resource-efficient route based on ultrasonic spray synthesis was developed to synthesise the La0.6Ca0.4Co0.2Fe0.8O3-d membranes. The La0.6Ca0.4Co0.2Fe0.8O3-d membrane developed using ultrasonic spray synthesis showed similar performance in terms of its oxygen permeation when compared with the ones synthesised with conventional techniques, such as co-precipitation, sol-gel, etc., despite using 30% less cobalt.

14.
Membranes (Basel) ; 12(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36363678

RESUMEN

High-entropy perovskite oxides have already been studied in various fields owing to their high-entropy-induced properties. Partial substitution of an element by a lower valence element usually improves the oxygen permeability of perovskite oxides, but high substitution amounts may lead to structural instability. In this work, pure high-entropy perovskites Pr1-xSrx(Cr,Mn,Fe,Co,Ni)O3-δ with high amounts Sr up to x = 0.5 were synthesized via a sol-gel method. Several characterization methods prove that the solubility of Sr increases with higher temperatures of the heating treatment. The ceramic with x = 0.5 shows a transition from semi-conductive to metallic behavior when the temperature reaches 873K. Its oxygen flux is comparable to the low-entropy counterpart La0.6Sr0.4Co0.5Fe0.5O3-δ. A stable run of ca. 46.2 h was documented for oxygen permeation under an air/CO2 gradient.

15.
Pharmaceutics ; 14(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631691

RESUMEN

The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John's wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John's wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13-32 mm inhibition zones with MIC 6.25-12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens' growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluated.

16.
Nanomaterials (Basel) ; 11(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33673018

RESUMEN

This contribution focuses on the green synthesis of silver nanoparticles (AgNPs) with a size < 100 nm for potential medical applications by using silver nitrate solution and Hypericum Perforatum L. (St John's wort) aqueous extracts. Various synthesis methods were used and compared with regard to their yield and quality of obtained AgNPs. Monodisperse spherical nanoparticles were generated with a size of approximately 20 to 50 nm as elucidated by different techniques (SEM, TEM). XRD measurements showed that metallic silver was formed and the particles possess a face-centered cubic structure (fcc). SEM images and FTIR spectra revealed that the AgNPs are covered by a protective surface layer composed of organic components originating from the plant extract. Ultraviolet-visible spectroscopy, dynamic light scattering, and zeta potential were also measured for biologically synthesized AgNPs. A potential mechanism of reducing silver ions to silver metal and protecting it in the nanoscale form has been proposed based on the obtained results. Moreover, the AgNPs prepared in the present study have been shown to exhibit a high antioxidant activity for 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, and super oxide anion radical and 2,2-diphenyl-1-picrylhydrazyl. Synthesized AgNPs showed high cytotoxicity by inhibiting cell viability for Hela, Hep G2, and A549 cells.

17.
Materials (Basel) ; 14(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064141

RESUMEN

The impact of low-pressure treatment on the crystal structure, morphology, and chemical composition of ettringite, due to their major importance with respect to processability (i.a., drying conditions) and to the analysis of ettringite-containing samples, is examined utilizing X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, and environmental scanning electron microscopy. Synthetic ettringite was treated for various durations (5 min up to 72 h) and at two different levels of low-pressure (4.0 mbar and 60 µbar). Evaluation showed a correlation between the procedural parameters (time and pressure), the chemical composition, and the morphology of ettringite. The experiments reveal that, when exposed to 4 mbar pressure, nearly no changes occur in the ettringite's morphology, whereas the crystals undergo swelling and slight deformations at very low pressures (60 µbar and 35.3 nbar), which is attributed to the loss of bound water and the partial transformation from ettringite to quicklime, anhydrite, and calcium aluminate. Furthermore, the strongly dehydrated ettringite shows the same morphology.

18.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672105

RESUMEN

Poly(3,4-ethylenedioxythiophene) (PEDOT) plays a key role in the field of electrically conducting materials, despite its poor solubility and processability. Various molecules and polymers carrying sulfonic groups can be used to enhance PEDOT's electrical conductivity. Among all, sulfonated polyarylether sulfone (SPAES), prepared via homogenous synthesis with controlled degree of sulfonation (DS), is a very promising PEDOT doping agent. In this work, PEDOT was synthesized via high-concentration solvent-based emulsion polymerization using 1% w/w of SPAES with different DS as dopant. It was found that the PEDOT:SPAESs obtained have improved solubility in the chosen reaction solvents, i.e., N, N-dimethylformamide, dimethylacetamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone and, for the first time, the role of doping agent, DS and polymerization solvents were investigated analyzing the electrical properties of SPAESs and PEDOT:SPAES samples and studying the different morphology of PEDOT-based thin films. High DS of SPAES, i.e., 2.4 meq R-SO3-× g-1 of polymer, proved crucial in enhancing PEDOT's electrical conductivity. Furthermore, the DMSO capability to favor PEDOT and SPAES chains rearrangement and interaction results in the formation of a polymer film with more homogenous morphology and higher conductivity than the ones prepared from DMAc, DMF, and NMP.

19.
Chemistry ; 16(26): 7898-903, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20496348

RESUMEN

A porous perovskite BaCo(x)Fe(y)Zr(0.9-x-y)Pd(0.1)O(3-delta) (BCFZ-Pd) coating was deposited onto the outer surface of a BaCo(x)Fe(y)Zr(1-x-y)O(3-delta) (BCFZ) perovskite hollow-fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ-Pd porous layer on the outer surface of a dense BCFZ hollow-fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ-Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH(4) onto the permeation side of the membrane. The blank BCFZ membrane and surface-modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H(2) min(-1) cm(-2) at 950 degrees C after depositing a BCFZ-Pd porous layer onto the BCFZ membrane.

20.
Membranes (Basel) ; 10(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806656

RESUMEN

Dense, H2- and CO2-resistant, oxygen-permeable 40 wt % Ce0.9Pr0.1O2-δ-60 wt % NdxSr1-xFe0.9Cu0.1O3-δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO2 atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ membrane reached up to 1.02 mL min-1 cm-2 and 0.63 mL min-1 cm-2 under an air/He and air/CO2 gradient at T = 1223 K, respectively. In addition, a Ce0.9Pr0.1O2-δ-Nd0.5Sr0.5Fe0.9Cu0.1O3-δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction-separation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA