Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(1-2): 254-267.e16, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633905

RESUMEN

The ability to engineer natural proteins is pivotal to a future, pragmatic biology. CRISPR proteins have revolutionized genome modification, yet the CRISPR-Cas9 scaffold is not ideal for fusions or activation by cellular triggers. Here, we show that a topological rearrangement of Cas9 using circular permutation provides an advanced platform for RNA-guided genome modification and protection. Through systematic interrogation, we find that protein termini can be positioned adjacent to bound DNA, offering a straightforward mechanism for strategically fusing functional domains. Additionally, circular permutation enabled protease-sensing Cas9s (ProCas9s), a unique class of single-molecule effectors possessing programmable inputs and outputs. ProCas9s can sense a wide range of proteases, and we demonstrate that ProCas9 can orchestrate a cellular response to pathogen-associated protease activity. Together, these results provide a toolkit of safer and more efficient genome-modifying enzymes and molecular recorders for the advancement of precision genome engineering in research, agriculture, and biomedicine.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Edición Génica/métodos , Proteínas Asociadas a CRISPR/química , ADN/química , Genoma , Modelos Moleculares , ARN/química , ARN Guía de Kinetoplastida/genética
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758097

RESUMEN

Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.


Asunto(s)
Neoplasias Encefálicas/genética , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Telomerasa/genética , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Astrocitos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Factor de Transcripción de la Proteína de Unión a GA/genética , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Mutación , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 117(12): 6531-6539, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32156733

RESUMEN

Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/antagonistas & inhibidores , Sistemas CRISPR-Cas , Inhibidores Enzimáticos/metabolismo , Staphylococcus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Secuencia Conservada , ADN/metabolismo , Edición Génica , Genoma Bacteriano/genética , Células HEK293 , Humanos , Secuencias Invertidas Repetidas , Staphylococcus/química , Staphylococcus aureus/enzimología
4.
Mol Cell ; 56(6): 796-807, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25435137

RESUMEN

The strength of conclusions drawn from RNAi-based studies is heavily influenced by the quality of tools used to elicit knockdown. Prior studies have developed algorithms to design siRNAs. However, to date, no established method has emerged to identify effective shRNAs, which have lower intracellular abundance than transfected siRNAs and undergo additional processing steps. We recently developed a multiplexed assay for identifying potent shRNAs and used this method to generate ∼250,000 shRNA efficacy data points. Using these data, we developed shERWOOD, an algorithm capable of predicting, for any shRNA, the likelihood that it will elicit potent target knockdown. Combined with additional shRNA design strategies, shERWOOD allows the ab initio identification of potent shRNAs that specifically target the majority of each gene's multiple transcripts. We validated the performance of our shRNA designs using several orthogonal strategies and constructed genome-wide collections of shRNAs for humans and mice based on our approach.


Asunto(s)
ARN Interferente Pequeño/genética , Programas Informáticos , Algoritmos , Secuencia de Bases , Línea Celular Tumoral , Simulación por Computador , Secuencia de Consenso , Técnicas de Silenciamiento del Gen , Humanos , MicroARNs/genética , Modelos Genéticos , Datos de Secuencia Molecular
5.
Proc Natl Acad Sci U S A ; 116(10): 4508-4517, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30709910

RESUMEN

Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.


Asunto(s)
Muerte Celular Autofágica , Neoplasias Colorrectales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células CACO-2 , Supervivencia Celular/genética , Neoplasias Colorrectales/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Células HCT116 , Humanos , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Mol Cell ; 41(6): 733-46, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21353615

RESUMEN

Short hairpin RNAs (shRNAs) provide powerful experimental tools by enabling stable and regulated gene silencing through programming of endogenous microRNA pathways. Since requirements for efficient shRNA biogenesis and target suppression are largely unknown, many predicted shRNAs fail to efficiently suppress their target. To overcome this barrier, we developed a "Sensor assay" that enables the biological identification of effective shRNAs at large scale. By constructing and evaluating 20,000 RNAi reporters covering every possible target site in nine mammalian transcripts, we show that our assay reliably identifies potent shRNAs that are surprisingly rare and predominantly missed by existing algorithms. Our unbiased analyses reveal that potent shRNAs share various predicted and previously unknown features associated with specific microRNA processing steps, and suggest a model for competitive strand selection. Together, our study establishes a powerful tool for large-scale identification of highly potent shRNAs and provides insights into sequence requirements of effective RNAi.


Asunto(s)
Técnicas Biosensibles , Ensayos Analíticos de Alto Rendimiento/métodos , Interferencia de ARN , ARN Interferente Pequeño/genética , Algoritmos , Animales , Fibroblastos/citología , Fibroblastos/fisiología , Silenciador del Gen , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Ratones , MicroARNs/genética , Células 3T3 NIH
7.
Genes Dev ; 25(15): 1628-40, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828272

RESUMEN

Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed "oncogene addiction." Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML). We show that MLL-AF9 contributes to leukemia maintenance by enforcing a Myb-coordinated program of aberrant self-renewal involving genes linked to leukemia stem cell potential and poor prognosis in human AML. Accordingly, partial and transient Myb suppression precisely phenocopies MLL-AF9 withdrawal and eradicates aggressive AML in vivo without preventing normal myelopoiesis, indicating that strategies to inhibit Myb-dependent aberrant self-renewal programs hold promise as effective and cancer-specific therapeutics. Together, our results identify Myb as a critical mediator of oncogene addiction in AML, delineate relevant Myb target genes that are amenable to pharmacologic inhibition, and establish a general approach for dissecting oncogene addiction in vivo.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia/fisiopatología , Oncogenes/fisiología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Animales , Modelos Animales de Enfermedad , Genes myb/genética , Hematopoyesis , Ratones , Proteínas de Fusión Oncogénica/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogénicas c-myb/genética , Interferencia de ARN
8.
Proc Natl Acad Sci U S A ; 111(37): 13421-6, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197055

RESUMEN

Enhanced protein synthesis capacity is associated with increased tumor cell survival, proliferation, and resistance to chemotherapy. Cancers like multiple myeloma (MM), which display elevated activity in key translation regulatory nodes, such as the PI3K/mammalian target of rapamycin and MYC-eukaryotic initiation factor (eIF) 4E pathways, are predicted to be particularly sensitive to therapeutic strategies that target this process. To identify novel vulnerabilities in MM, we undertook a focused RNAi screen in which components of the translation apparatus were targeted. Our screen was designed to identify synthetic lethal relationships between translation factors or regulators and dexamethasone (DEX), a corticosteroid used as frontline therapy in this disease. We find that suppression of all three subunits of the eIF4F cap-binding complex synergizes with DEX in MM to induce cell death. Using a suite of small molecules that target various activities of eIF4F, we observed that cell survival and DEX resistance are attenuated upon eIF4F inhibition in MM cell lines and primary human samples. Levels of MYC and myeloid cell leukemia 1, two known eIF4F-responsive transcripts and key survival factors in MM, were reduced upon eIF4F inhibition, and their independent suppression also synergized with DEX. Inhibition of eIF4F in MM exerts pleotropic effects unraveling a unique therapeutic opportunity.


Asunto(s)
Dexametasona/uso terapéutico , Factor 4F Eucariótico de Iniciación/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Dexametasona/farmacología , Genes Modificadores , Humanos , Terapia Molecular Dirigida , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN/efectos de los fármacos , Supresión Genética/efectos de los fármacos , Triterpenos/farmacología
9.
Nature ; 465(7298): 577-83, 2010 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-20520707

RESUMEN

Hypoxia-inducible factor (HIF) is a transcription factor that regulates fundamental cellular processes in response to changes in oxygen concentration. HIFalpha protein levels are increased in most solid tumours and correlate with patient prognosis. The link between HIF and apoptosis, a major determinant of cancer progression and treatment outcome, is poorly understood. Here we show that Caenorhabditis elegans HIF-1 protects against DNA-damage-induced germ cell apoptosis by antagonizing the function of CEP-1, the homologue of the tumour suppressor p53. The antiapoptotic property of HIF-1 is mediated by means of transcriptional upregulation of the tyrosinase family member TYR-2 in the ASJ sensory neurons. TYR-2 is secreted by ASJ sensory neurons to antagonize CEP-1-dependent germline apoptosis. Knock down of the TYR-2 homologue TRP2 (also called DCT) in human melanoma cells similarly increases apoptosis, indicating an evolutionarily conserved function. Our findings identify a novel link between hypoxia and programmed cell death, and provide a paradigm for HIF-1 dictating apoptotic cell fate at a distance.


Asunto(s)
Apoptosis , Caenorhabditis elegans/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Monofenol Monooxigenasa/metabolismo , Células Receptoras Sensoriales/enzimología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Apoptosis/efectos de la radiación , Caenorhabditis elegans/citología , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/metabolismo , Hipoxia de la Célula , Daño del ADN , Células Germinativas/metabolismo , Células Germinativas/patología , Humanos , Oxidorreductasas Intramoleculares/deficiencia , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Melanoma/metabolismo , Melanoma/patología , Monofenol Monooxigenasa/deficiencia , Células Receptoras Sensoriales/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(3): 869-74, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22219365

RESUMEN

shRNAs can trigger effective silencing of gene expression in mammalian cells, thereby providing powerful tools for genetic studies, as well as potential therapeutic strategies. Specific shRNAs can interfere with the replication of pathogenic viruses and are currently being tested as antiviral therapies in clinical trials. However, this effort is hindered by our inability to systematically and accurately identify potent shRNAs for viral genomes. Here we apply a recently developed highly parallel sensor assay to identify potent shRNAs for HIV, hepatitis C virus (HCV), and influenza. We observe known and previously unknown sequence features that dictate shRNAs efficiency. Validation using HIV and HCV cell culture models demonstrates very high potency of the top-scoring shRNAs. Comparing our data with the secondary structure of HIV shows that shRNA efficacy is strongly affected by the secondary structure at the target RNA site. Artificially introducing secondary structure to the target site markedly reduces shRNA silencing. In addition, we observe that HCV has distinct sequence features that bias HCV-targeting shRNAs toward lower efficacy. Our results facilitate further development of shRNA based antiviral therapies and improve our understanding and ability to predict efficient shRNAs.


Asunto(s)
Antivirales/química , Genoma Viral/genética , Conformación de Ácido Nucleico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , Virus/genética , Virus/patogenicidad , Antivirales/farmacología , Secuencia de Bases , Células Cultivadas , Pruebas Genéticas , VIH/efectos de los fármacos , VIH/genética , Células HeLa , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Interferencia de ARN/efectos de los fármacos , Reproducibilidad de los Resultados , Virus/efectos de los fármacos
11.
bioRxiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979269

RESUMEN

Genome editing is poised to revolutionize treatment of genetic diseases, but poor understanding and control of DNA repair outcomes hinders its therapeutic potential. DNA repair is especially understudied in nondividing cells like neurons, which must withstand decades of DNA damage without replicating. This lack of knowledge limits the efficiency and precision of genome editing in clinically relevant cells. To address this, we used induced pluripotent stem cells (iPSCs) and iPSC-derived neurons to examine how postmitotic human neurons repair Cas9-induced DNA damage. We discovered that neurons can take weeks to fully resolve this damage, compared to just days in isogenic iPSCs. Furthermore, Cas9-treated neurons upregulated unexpected DNA repair genes, including factors canonically associated with replication. Manipulating this response with chemical or genetic perturbations allowed us to direct neuronal repair toward desired editing outcomes. By studying DNA repair in postmitotic human cells, we uncovered unforeseen challenges and opportunities for precise therapeutic editing.

12.
Cell Rep ; 42(11): 113339, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37917583

RESUMEN

Glioblastoma (GBM) is the most common lethal primary brain cancer in adults. Despite treatment regimens including surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, growth of residual tumor leads to therapy resistance and death. At recurrence, a quarter to a third of all gliomas have hypermutated genomes, with mutational burdens orders of magnitude greater than in normal tissue. Here, we quantified the mutational landscape progression in a patient's primary and recurrent GBM, and we uncovered Cas9-targetable repeat elements. We show that CRISPR-mediated targeting of highly repetitive loci enables rapid elimination of GBM cells, an approach we term "genome shredding." Importantly, in the patient's recurrent GBM, we identified unique repeat sequences with TMZ mutational signature and demonstrated that their CRISPR targeting enables cancer-specific cell ablation. "Cancer shredding" leverages the non-coding genome and therapy-induced mutational signatures for targeted GBM cell depletion and provides an innovative paradigm to develop treatments for hypermutated glioma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glioblastoma/patología , Glioma/genética , Glioma/tratamiento farmacológico , Antineoplásicos Alquilantes/farmacología
13.
Cell Rep Methods ; 2(7): 100239, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35880017

RESUMEN

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , Interferencia de ARN , Vectores Genéticos , ARN Interferente Pequeño/genética , Regiones Promotoras Genéticas
14.
Nat Commun ; 12(1): 5664, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580310

RESUMEN

Proteins evolve through the modular rearrangement of elements known as domains. Extant, multidomain proteins are hypothesized to be the result of domain accretion, but there has been limited experimental validation of this idea. Here, we introduce a technique for genetic minimization by iterative size-exclusion and recombination (MISER) for comprehensively making all possible deletions of a protein. Using MISER, we generate a deletion landscape for the CRISPR protein Cas9. We find that the catalytically-dead Streptococcus pyogenes Cas9 can tolerate large single deletions in the REC2, REC3, HNH, and RuvC domains, while still functioning in vitro and in vivo, and that these deletions can be stacked together to engineer minimal, DNA-binding effector proteins. In total, our results demonstrate that extant proteins retain significant modularity from the accretion process and, as genetic size is a major limitation for viral delivery systems, establish a general technique to improve genome editing and gene therapy-based therapeutics.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Dominios y Motivos de Interacción de Proteínas/genética , ARN Guía de Kinetoplastida/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/ultraestructura , Línea Celular Tumoral , Microscopía por Crioelectrón , ADN/metabolismo , Edición Génica/métodos , Humanos , Imagen Individual de Molécula
15.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33984270

RESUMEN

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Mitocondrias/genética , Neoplasias/metabolismo , Peroxisomas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Línea Celular Tumoral , Metabolismo Energético/genética , Femenino , Homeostasis/genética , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neoplasias/genética , Neoplasias/patología , Peroxisomas/genética
16.
ACS Cent Sci ; 6(9): 1564-1571, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999931

RESUMEN

The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o-quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.

17.
Nat Biotechnol ; 37(6): 626-631, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110355

RESUMEN

Base editing requires that the target sequence satisfy the protospacer adjacent motif requirement of the Cas9 domain and that the target nucleotide be located within the editing window of the base editor. To increase the targeting scope of base editors, we engineered six optimized adenine base editors (ABEmax variants) that use SpCas9 variants compatible with non-NGG protospacer adjacent motifs. To increase the range of target bases that can be modified within the protospacer, we use circularly permuted Cas9 variants to produce four cytosine and four adenine base editors with an editing window expanded from ~4-5 nucleotides to up to ~8-9 nucleotides and reduced byproduct formation. This set of base editors improves the targeting scope of cytosine and adenine base editing.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Adenina/química , Citosina/química , Humanos , Nucleótidos/química , Nucleótidos/genética , Plásmidos/química , Plásmidos/genética
18.
Nat Biotechnol ; 37(7): 820, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31182863

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Elife ; 82019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31397669

RESUMEN

CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.


Asunto(s)
Acidaminococcus/enzimología , Bacteriófagos/crecimiento & desarrollo , Sistemas CRISPR-Cas/efectos de los fármacos , Clostridiales/enzimología , Inhibidores Enzimáticos/metabolismo , Interacciones Huésped-Parásitos , Proteínas Virales/metabolismo , Acidaminococcus/virología , Clostridiales/virología , Evolución Molecular
20.
Nat Commun ; 10(1): 2127, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073154

RESUMEN

The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands. Since our system acts directly on each target-specific sgRNA, it enables new applications that require differential and opposing temporal control of multiple genes.


Asunto(s)
Aptámeros de Nucleótidos/genética , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , ADN/genética , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA