Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(1): 295-304, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117248

RESUMEN

Chemodynamic therapy based on the Fenton reaction has been developed as an extremely promising modality for cancer therapeutics. In this study, a core-shell structure nanoplatform was constructed by a Au nanorod externally encapsulating Ce/Zn-based composites (ACZO). The nanoparticles can catalyze the generation of reactive oxygen species (ROS) under acidic conditions and effectively consume existing glutathione (GSH) to destroy the redox balance within the tumor. Moreover, the decomposition of the nanocomplexes under acidic conditions releases large amounts of zinc ions, leading to zinc overload in cancer cells. The photothermal effect generated by the Au nanorods not only provides photothermal therapy (PTT) but also augments the catalytic reaction and ions action mentioned above. This facile strategy to improve the efficacy of chemodynamic therapy by the photothermal enhancement of catalytic activity and zinc ion release provides a promising perspective for potential tumor treatment.


Asunto(s)
Nanopartículas , Nanotubos , Neoplasias , Humanos , Catálisis , Glutatión , Zinc/farmacología , Iones , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Peróxido de Hidrógeno , Microambiente Tumoral
2.
Opt Lett ; 49(4): 985-988, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359242

RESUMEN

We investigate a unidirectional coupled chiral fiber grating (UCFG) with both helical refractive index (RI) and loss modulation. The two modulations form a π/2 phase difference in the fiber cross-sectional azimuth angle, which "breaks" the mode coupled reciprocity of the forward and backward propagation. The forward propagation fundamental mode coupling is forbidden, while the backward propagation fundamental mode is coupled to the vortex mode. A simulation model based on the beam propagation method (BPM) is utilized to confirm the unidirectional coupling. Using the coupled mode analysis, we find that the key to the coupling difference lies in the non-Hermitian coupling matrix. In addition, the UCFG design involving mixed modulation is also discussed. The UCFG demonstrates its potential as a passive vortex beam generator, filter, and detector, with a transmittance difference of up to 30 dB between the coupled and uncoupled vortex modes.

3.
Opt Lett ; 49(3): 654-657, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300082

RESUMEN

A Reuleaux triangle core fiber (RTF) with triple rotational symmetry is proposed and fabricated. Then the RTF is twisted to form the chiral fiber grating, which converts the core mode into a vortex mode containing 3rd-order orbital angular momentum (OAM). Based on the Fourier expansion of the core boundary, the straight-sided and arc-sided triangular core profiles were analyzed, revealing the mechanism of high-efficiency OAM3 generation. The experimental results show a 3rd-order vortex mode with a high conversion efficiency and purity, and the polarization-independent characteristics endowed by the core shape are also confirmed. The proposed RTF provides a new, to the best of our knowledge, way for higher-order vortex beam generation, which can be used in optical fiber communication systems with OAM multiplexing.

4.
J Fish Dis ; : e13936, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421366

RESUMEN

During breeding, some oriental river prawns (Macrobrachium nipponense, de Haan), an important aquaculture species in China, exhibit yellowish-brown body colouration, reduced appetite, and vitality. Diseased prawns revealed characteristic emulsifying disease signs, including whitened musculature, hepatopancreatic tissues, milky haemolymph, and non-coagulation. The present study investigated the causative agent of M. nipponense infection through isolation, histopathology, molecular sequencing, and infection experiments. The pathogenic strain exhibited distinctive white colonies on Bengal red medium, with microscopic examination confirming the presence of yeast cells. Histopathological analysis revealed prominent pathological alterations and yeast cell infiltration in muscles, hepatopancreas and gills. Additionally, 26S rDNA sequencing of the isolated yeast strain LNMN2022 revealed Metschnikowia bicuspidata (GenBank: OR518659) as the causative agent. This strain exhibited a 98.28% sequence homology with M. bicuspidata LNMB2021 (GenBank: OK094821) and 96.62% with M. bicuspidata LNES0119 (GenBank: OK073903). The pathogenicity test confirmed that M. bicuspidata elicited clinical signs in M. nipponense consistent with those observed in natural populations, and the median lethal concentration was determined to be 3.3 × 105 cfu/mL. This study establishes a foundation for further investigations into the host range and epidemiological characteristics of the pathogen M. bicuspidata in aquatic animals and provides an empirical basis for disease management in M. nipponense.

5.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38544029

RESUMEN

In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry-Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‱, -10.62 nm/MPa, and -0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors.

6.
J Sci Food Agric ; 104(10): 5869-5881, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407005

RESUMEN

BACKGROUND: Flax lignan has attracted much attention because of its potential bioactivities. However, the bioavailability of secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, depends on the bioconversion by the colon bacteria. Lactic acid bacteria (LAB) with ß-glucosidase activity has found wide application in preparing bioactive aglycone. RESULTS: LAB strains with good ß-glucosidase activity were isolated from fermented tofu. Their bioconversion of flax lignan extract was investigated by resting cell catalysis and microbial fermentation, and the metabolism of SDG by Lactiplantibacillus plantarum C5 following fermentation was characterized by widely targeted metabolomics. Five L. plantarum strains producing ß-glucosidase with broad substrate specificity were isolated and identified, and they all can transform SDG into secoisolariciresinol (SECO). L. plantarum C5 resting cell reached a maximum SDG conversion of 49.19 ± 3.75%, and SECO generation of 21.49 ± 1.32% (0.215 ± 0.013 mm) at an SDG substrate concentration of 1 mM and 0.477 ± 0.003 mm SECO was produced at 4 mm within 24 h. Although sixteen flax lignan metabolites were identified following the fermentation of SDG extract by L. plantarum C5, among them, four were produced following the fermentation: SECO, demethyl-SECO, demethyl-dehydroxy-SECO and isolariciresinol. Moreover, seven lignans increased significantly. CONCLUSION: Fermentation significantly increased the profile and level of flax lignan metabolites, and the resting cell catalysis benefits from higher bioconversion efficiency and more straightforward product separation. Resting cell catalysis and microbial fermentation of flax lignan extract by the isolated ß-glucosidase production L. plantarum could be potentially applied in preparing flax lignan ingredients and fermented flaxseed. © 2024 Society of Chemical Industry.


Asunto(s)
Biotransformación , Fermentación , Lino , Lignanos , beta-Glucosidasa , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Proteínas Bacterianas/metabolismo , Butileno Glicoles/metabolismo , Catálisis , Glucósidos
7.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480613

RESUMEN

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Asunto(s)
Lino , Glucósidos , Lignanos , Lino/química , Lino/metabolismo , Fermentación , Lignanos/farmacología , Lignanos/química , Lignanos/metabolismo , Glicósidos , Butileno Glicoles/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiinflamatorios/farmacología
8.
Opt Express ; 31(25): 42218-42229, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087600

RESUMEN

A mixed multi-order vortex beam generator, based on a Reuleaux triangle core fiber chiral grating (RCFG), is proposed. The triangular perturbation and off-axis effects induced by core shape, result in the simultaneous coupling of the core mode with the 1st- and 3rd-order vortex modes. To the best of our knowledge, this is the first time that a mixed vortex beam was generated in a single chiral fiber. The phase matching conditions required for the co-coupling of multi-order vortex beams are analyzed based on the coupled mode theory. Additionally, a cladding shrinkage method is proposed to flexibly adjust the co-coupling wavelength. We found that the key to co-coupling lies in balancing the different order perturbations of the Reuleaux triangle core fiber (RTF). The proposed method offers a new approach for the design of mixed multi-order vortex beam generators, with potential applications in fields such as fiber OAM communications, optical tweezers, and super-resolution imaging.

9.
Fish Shellfish Immunol ; 143: 109180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863124

RESUMEN

Polyascus gregaria, a parasitic barnacle, poses a significant threat to Eriocheir sinensis farms by inhibiting crab growth. However, the molecular and pathological mechanisms behind P. gregaria infection in the hepatopancreas of E. sinensis remain unclear. In this study, we investigated the impact and underlying mechanisms of P. gregaria infection on E. sinensis through analyzing the infected hepatopancreatic tissues by tandem mass tag technology and RNA-Seq high-throughput sequencing. Among the identified 10,693 differentially expressed genes, 294 genes were significantly altered following P. gregaria infection, including 92 upregulated and 202 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further revealed the involvement of these genes in oxidative decomposition, lipid metabolism, inflammation, and hepatopancreas metabolism. Meanwhile, the identified 253 differentially expressed proteins, including 143 upregulated and 110 downregulated proteins, are mainly related to cellular and metabolic processes, catalytic activity, and cell components. The pathway analysis indicated their enrichment in glycolysis/gluconeogenesis, oxidative phosphorylation, endoplasmic reticulum protein processing, and actin cytoskeleton regulation. The involvement of these differentially expressed genes and proteins in the peroxisome proliferator-activated receptors pathway during host immune responses against P. gregaria infection has been highlighted. Furthermore, pathological examinations and biochemical indicators jointly demonstrated the hepatopancreatic damage and increased oxidative stress and apoptosis in the infected E. sinensis. Collectively, our study provides crucial insights into the mechanisms underlying the E. sinensis-P. gregaria interactions, and may contribute to the development of novel strategies for parasite control and reducing economic losses in aquaculture.


Asunto(s)
Braquiuros , Animales , Multiómica , Hepatopáncreas , Apoptosis , Estrés Oxidativo
10.
Fish Shellfish Immunol ; 133: 108557, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669602

RESUMEN

The emergence of the microsporidian, Enterocytospora artemiae, has caused serious economic losses to the aquaculture industry of Palaemonetes sinensis. The hepatopancreas is the main digestive and immune organ of P. sinensis, and the main site of E. artemiae infection. We used next-generation sequencing to determine the effects of E. artemiae parasitism on the hepatopancreas of P. sinensis at the transcriptome level. The hepatopancreas of P. sinensis was parasitized by E. artemiae, and 881 differentially expressed genes (DEGs) were obtained, of which 643 were upregulated and 238 were downregulated. These DEGs are mainly involved in DNA replication, transcription, translation, immunity, and metabolism. Among them, the cellular processes of DNA replication, transcription and translation are significantly strengthened, which may be related to the use of host ATP and nucleic acid by E. artemiae to achieve proliferation and damage to host cells to enhance DNA replication and repair. Moreover, to defend against E. artemiae, some immune genes related to antioxidation, such as glutathione metabolism, seleno compound metabolism, and cytochrome p450 2L1, were significantly upregulated, but simultaneously, tumor necrosis factor, NF-κB inhibitor α, and other immune-related genes were significantly down regulated, indicating that the parasitism of E. artemiae led to a significant decline in the immune defense ability of P. sinensis. From the perspective of metabolism, the metabolism-related DEGs of retinol, glycine, serine, and threonine metabolism, were significantly downregulated, resulting in insufficient nutrient absorption and decreased energy supply of the P. sinensis, which in turn affected their growth. The differential genes and pathways identified in this study can provide a reference basis to further elucidate the pathogenic mechanism of P. sinensis infected with E. artemiae and the prevention and control of microsporidia disease.


Asunto(s)
Braquiuros , Microsporidios , Palaemonidae , Animales , Palaemonidae/genética , Hepatopáncreas , Perfilación de la Expresión Génica/veterinaria , Microsporidios/genética , Transcriptoma
11.
Macromol Rapid Commun ; 44(13): e2300060, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37014631

RESUMEN

Currently, heat accumulation has seriously affected the stabilities and life of electronic devices. Polyimide (PI) film with high thermal conductivity coefficient (λ) has long been held up as an ideal solution for heat dissipation. Based on the thermal conduction mechanisms and classical thermal conduction models, this review presents design ideas of PI films with microscopically ordered liquid crystalline structures which are of great significance for breaking the limit of λ enhancement and describes the construction principles of thermal conduction network in high-λ filler strengthened PI films. Furthermore, the effects of filler type, thermal conduction paths, and interfacial thermal resistances on thermally conductive behavior of PI film are systematically reviewed. Meanwhile, this paper summarizes the reported research and provides an outlook on the future development of thermally conductive PI films. Finally, it is expected that this review will give some guidance to future studies in thermally conductive PI film.


Asunto(s)
Electrónica , Cristales Líquidos , Conductividad Eléctrica , Calor , Conductividad Térmica
12.
Mediators Inflamm ; 2023: 6331650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36700172

RESUMEN

Periprosthetic osteolysis (PPO), caused by wear particles, has become a major cause of joint replacement failure. Secondary surgery after joint replacement poses a serious threat to public health worldwide. Therefore, determining how to effectively inhibit wear particle-induced PPO has become an urgent issue. Recently, the interaction between osteogenic inhibition and wear particles at the biological interface of the implant has been found to be an important factor in the pathological process. Previous studies have found that the central nervous system plays an important role in the regulation of bone formation and bone remodeling. Dopamine (DA), an important catecholamine neurotransmitter, plays an integral role in the physiological and pathological processes of various tissues through its corresponding receptors. Our current study found that upregulation of dopamine first receptors could be achieved by activating the Wnt/ß-catenin pathway, improving osteogenesis in vivo and in vitro, and significantly reducing the inhibition of titanium particle-induced osteogenesis. Overall, these findings suggest that dopamine first receptor (D1R) may be a plausible target to promote osteoblast function and resist wear particle-induced PPO.


Asunto(s)
Osteogénesis , Osteólisis , Humanos , Dopamina/metabolismo , Osteoclastos/metabolismo , Osteólisis/inducido químicamente , Receptores de Dopamina D1/metabolismo , Titanio/farmacología , Vía de Señalización Wnt
13.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901774

RESUMEN

Alcoholic liver disease (ALD) is currently considered a global healthcare problem with limited pharmacological treatment options. There are abundant cell types in the liver, such as hepatocytes, endothelial cells, Kupffer cells and so on, but little is known about which kind of liver cells play the most important role in the process of ALD. To obtain a cellular resolution of alcoholic liver injury pathogenesis, 51,619 liver single-cell transcriptomes (scRNA-seq) with different alcohol consumption durations were investigated, 12 liver cell types were identified, and the cellular and molecular mechanisms of the alcoholic liver injury were revealed. We found that more aberrantly differential expressed genes (DEGs) were present in hepatocytes, endothelial cells, and Kupffer cells than in other cell types in alcoholic treatment mice. Alcohol promoted the pathological processes of liver injury; the specific mechanisms involved: lipid metabolism, oxidative stress, hypoxia, complementation and anticoagulation, and hepatocyte energy metabolism on hepatocytes; NO production, immune regulation, epithelial and cell migration on endothelial cells; antigen presentation and energy metabolism on Kupffer cells, based on the GO analysis. In addition, our results showed that some transcription factors (TFs) are activated in alcohol-treated mice. In conclusion, our study improves the understanding of liver cell heterogeneity in alcohol-fed mice at the single-cell level. It has potential value for understanding key molecular mechanisms and improving current prevention and treatment strategies for short-term alcoholic liver injury.


Asunto(s)
Hepatopatías Alcohólicas , ARN , Ratones , Animales , ARN/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Hepatopatías Alcohólicas/metabolismo , Etanol/farmacología , Perfilación de la Expresión Génica
14.
J Ethn Subst Abuse ; : 1-14, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622317

RESUMEN

China is a multi-ethnic country, but inter-ethnic disparities in alcohol-related harm to children have not been described. In this study, we assessed differences in prevalence of self-reported alcohol-related harm to children in Yi and Han households in Chuxiong Yi Prefecture, Yunnan Province, China. We conducted a cross-sectional study among caregivers in households with a child age less than 18 years using structured questionnaire interview. Participants included 241 Yi caregivers and 610 Han caregivers (overall refusal rate = 1.1%). Heavy drinking was more common in Yi households than Han households (41.9% vs. 30.8%, respectively), but there was no difference in alcohol-related harm to children (21.2% vs. 17.9%; Adjusted OR = 0.98; 95% CI = 0.65, 1.46). Caveats such as social desirability in reporting sensitive issues and the cross-sectional study design should be considered in the interpretation of the study findings.

15.
Mol Med ; 28(1): 23, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189819

RESUMEN

BACKGROUND: The inhibition of osteogenic differentiation is a major factor in glucocorticoid-induced bone loss, but there is currently no effective treatment. Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of the neuroendocrine system in bone metabolism has emerged, the precise effects of dopamine receptor signaling on osteoblastogenesis remain unknown. METHODS: In vitro, western blotting and immunofluorescence staining were used to observe the expression of dopamine receptors in MC3T3-E1 and BMSCs cells treated with dexamethasone (Dex). In addition, Alizarin red S (ARS) and alkaline phosphatase (ALP) staining and western blotting were used to evaluate the effect of D1R activation on osteogenic differentiation in Dex-induced MC3T3-E1 cells via the ERK1/2 signaling pathway. In vivo, micro-CT and hematoxylin and eosin (H&E), toluidine blue and immunohistochemical staining were used to determine the effect of D1R activation on Dex-induced bone loss. RESULTS: We demonstrated that the trend in D1R but not D2-5R was consistent with that of osteogenic markers in the presence of Dex. We also demonstrated that the activation of D1R promoted Dex-induced osteogenic differentiation by activating the ERK1/2 pathway in vitro. We further demonstrated that a D1R agonist could reduce Dex-induced bone loss, while pretreatment with a D1R inhibitor blocked the effect of a D1R agonist in vivo. CONCLUSIONS: Activation of D1R promotes osteogenic differentiation and reduces Dex-induced bone loss by activating the ERK1/2 pathway. Hence, D1R could serve as a potential therapeutic target for glucocorticoid-induced osteoporosis.


Asunto(s)
Glucocorticoides , Osteogénesis , Diferenciación Celular , Glucocorticoides/efectos adversos , Sistema de Señalización de MAP Quinasas , Osteoblastos , Transducción de Señal
16.
Chemistry ; 27(65): 16117-16120, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34505320

RESUMEN

In this work, the first examples of inorganic macrocyclic tin-oxo clusters which are stabilized by sulfate ligands are reported. As determined by X-ray diffraction and photoelectron spectroscopy analyses, the prepared inorganic Sn10 -oxo cluster displays interesting mixed valence behaviors, with 8 Sn4+ located at the cyclic skeleton and two Sn2+ encapsulated in the center. When further introducing Ti4+ and In3+ ions to the synthetic systems, heterometallic Sn2 Ti6 and SnIn5 Ti6 complexes with Ti6 (SO4 )9 and SnIn5 (SO4 )12 macrocyclic skeletons were prepared whose configuration and packing models were affected by the ionic radius of incorporated metals. Moreover, comparative CO2 reduction experiments confirm that such heterometallic composition can significantly improve the catalytic activities of these inorganic macrocyclic oxo clusters. This work represents a milestone in constructing inorganic tin complexes and also macrocyclic metal oxo clusters with tunable configurations and properties.

17.
Inorg Chem ; 60(3): 1885-1892, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442984

RESUMEN

Tin oxide based materials have attracted much attention as new sources for nonlinear optical (NLO) devices, while the electronic mechanism behind the structure and nonlinearity is still unclear. In this work, by precisely controlling different functionalization ligands, here a series of binuclear [(nBuSn)2(TEOA)2L2] (L = monocarboxylic acid ligand) complexes have been synthesized and characterized; we also adopted a new method to make the metal clusters and PMMA blend together for NLO testing. Importantly, the electronic structure, static third-order NLO properties, sum over states (SOS) have been studied by both experimental and density function theory (DFT) analysis. The effects for general NLO polarizability under various conditions, including different substitutions ligands and replacement of the metal cores, have been further investigated. The results indicate the static second hyperpolarizabilities (γ) is inversely proportional to the band gap decreases. Notably, the theory predicts that the third-order nonlinear coefficient will double through the synergistic effects of pull-push groups. The hole-electron analysis of the main excited states indicates the simultaneous introduction of pull-push electron groups into the system cause the excitation of the valence layer from LE to LLCT, which also leads to significant increase in the γ value of complex 13. This work demonstrates that an efficient adjustment for the intensity of NLO polarizability can be achieved by regulating the substitutions and the material structures, providing a new potential for the application of tin-oxo clusters in the field of nonlinear optics.

18.
Appl Opt ; 59(9): 2883-2891, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225838

RESUMEN

A resolution-improved prism coupler-based surface plasmon resonance (SPR) sensor with a simple, effective rotational modulation method is proposed in this paper. For a conventional SPR sensor, the way to improve its measurement resolution is usually to use the rotating device with higher resolution. Measurement resolution depends on the modulation resolution of the incident angle; therefore, we propose a rotational modulation method that is implemented by rotating the prism horizontally to improve the modulation resolution of the incident angle, instead of using a more expensive rotating device with higher resolution. This scheme is validated both theoretically and experimentally. Furthermore, theoretical simulations show that the rotational modulation method can also be applied to long-range surface plasmon resonance sensors for better results.

19.
Analyst ; 144(17): 5254-5260, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31364615

RESUMEN

In this paper we report a novel probe based on a luminescent 23-membered [1 + 1] Schiff-base macrocyclic mononuclear Sm(iii) complex Sm-2e, originating from the dialdehyde H2Qe and 1,2-bis(2-aminoethoxy)ethane precursors, which is synthesized by the Sm(iii) ion template method. X-ray structural analyses confirm that each ten-coordinate Sm(iii) center with the coordination geometry of a distorted bicapped square antiprism is fully encapsulated by a flexible macrocyclic ligand H2L2e to form a "lasso-type" architecture, and this architecture could enable efficient energy transfer in various solvents confirmed by long lifetimes (33.5-65.2 µs) and high quantum yields (0.23-0.76%) of the Sm(iii) ion. Simultaneously, complex Sm-2e could serve as a probe for sensing organic solvents. Particularly, this complex probe Sm-2e exhibits a highly selective, rapid and sensitive response to tetrahydrofuran (THF), which is easily distinguished by a large absorption shift, even visible to the naked eye, and complete fluorescence quenching. Moreover, the limit of detection for THF is about 0.20% determined by titration experiments, and good selectivity for THF could still be realized in mixture solvents. Consequently, this colorimetric and "turn off" fluorescent probe Sm-2e could be a valuable candidate as a sensor material for sensing THF which has been rarely reported.


Asunto(s)
Complejos de Coordinación/química , Colorantes Fluorescentes/química , Furanos/análisis , Colorimetría/métodos , Complejos de Coordinación/síntesis química , Fluorescencia , Colorantes Fluorescentes/síntesis química , Límite de Detección , Samario/química , Bases de Schiff/síntesis química , Bases de Schiff/química , Espectrometría de Fluorescencia/métodos
20.
Fish Physiol Biochem ; 44(1): 35-48, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28986724

RESUMEN

In teleost, sex steroid hormones are critical for reproduction. Progestin is known to promote spermiation. To further understand the functions of progestin via its receptors during the annual reproductive cycle in male turbot (Scophthalmus maximus), we observed testicular development, quantified several sex steroid hormones, detected the expression of progestin receptors, and measured various sperm parameters. Results showed that the turbot testicular structure was of the lobular type. During breeding season, a number of spermatocytes (stage III) developed into spermatids (stage IV), then differentiated into sperm during spermiogenesis (stage V), and finally regressed to spermatocytes (stage VI). Concomitant with testicular development, serum progesterone (P4) and 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) exhibited higher levels from stage IV to V than other stages. Furthermore, males with higher motility sperm showed higher levels of P4 and DHP compared with fish with lower motility sperm. These results indicated that P4 and DHP might induce spermatogenesis due to seasonal changes. Concurrently, in testes, the nuclear progesterone receptor (pgr) was expressed throughout the reproductive cycle and its level peaked during spermiogenesis while expression of membrane progestin receptor alpha (mPRα) did not change significantly. However, in sperm, mPRα expression was higher than in testes and had a significant positive correlation with curvilinear velocities (VCL), sperm motility, and motility duration. In conclusion, progestin appears to exert a direct pgr-mediated effect on spermiogenesis and improve sperm motility characteristics depending on the abundance of mPRα protein in sperm during spermiation.


Asunto(s)
Peces Planos/crecimiento & desarrollo , Progestinas/metabolismo , Receptores de Progesterona/metabolismo , Animales , Clonación Molecular , Masculino , Reproducción/fisiología , Testículo/anatomía & histología , Testículo/fisiología , Testosterona/sangre , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA