Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
EMBO J ; 40(24): e108080, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34747049

RESUMEN

Altered intestinal microbial composition promotes intestinal barrier dysfunction and triggers the initiation and recurrence of inflammatory bowel disease (IBD). Current treatments for IBD are focused on control of inflammation rather than on maintaining intestinal epithelial barrier function. Here, we show that the internalization of Gram-negative bacterial outer membrane vesicles (OMVs) in human intestinal epithelial cells promotes recruitment of caspase-5 and PIKfyve to early endosomal membranes via sorting nexin 10 (SNX10), resulting in LPS release from OMVs into the cytosol. Caspase-5 activated by cytosolic LPS leads to Lyn phosphorylation, which in turn promotes nuclear translocalization of Snail/Slug, downregulation of E-cadherin expression, and intestinal barrier dysfunction. SNX10 deletion or treatment with DC-SX029, a novel SNX10 inhibitor, rescues OMV-induced intestinal barrier dysfunction and ameliorates colitis in mice by blocking cytosolic LPS release, caspase-5 activation, and downstream signaling. Our results show that targeting SNX10 may be a new therapeutic approach for restoring intestinal epithelial barrier function and promising strategy for IBD treatment.


Asunto(s)
Membrana Externa Bacteriana/química , Caspasas/metabolismo , Colitis/patología , Lipopolisacáridos/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/genética , Citosol/metabolismo , Modelos Animales de Enfermedad , Endosomas/metabolismo , Endosomas/trasplante , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipopolisacáridos/efectos adversos , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
2.
Pharmacol Res ; 202: 107128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438089

RESUMEN

The damage of integrated epithelial epithelium is a key pathogenic factor and closely associated with the recurrence of ulcerative colitis (UC). Here, we reported that vanillic acid (VA) exerted potent therapeutic effects on DSS-induced colitis by restoring intestinal epithelium homeostasis via the inhibition of ferroptosis. By the CETSA assay and DARTS assay, we identified carbonic anhydrase IX (CAIX, CA9) as the direct target of VA. The binding of VA to CA9 causes insulin-induced gene-2 (INSIG2) to interact with stromal interaction molecule 1 (STIM1), rather than SREBP cleavage-activating protein (SCAP), leading to the translocation of SCAP-SREBP1 from the endoplasmic reticulum (ER) to the Golgi apparatus for cleavage into mature SREBP1. The activation of SREBP1 induced by VA then significantly facilitated the transcription of stearoyl-CoA desaturase 1 (SCD1) to exert an inhibitory effect on ferroptosis. By inhibiting the excessive death of intestinal epithelial cells caused by ferroptosis, VA effectively preserved the integrity of intestinal barrier and prevented the progression of unresolved inflammation. In conclusion, our study demonstrated that VA could alleviate colitis by restoring intestinal epithelium homeostasis through CA9/STIM1-mediated inhibition of ferroptosis, providing a promising therapeutic candidate for UC.


Asunto(s)
Colitis , Ferroptosis , Humanos , Animales , Ratones , Ácido Vanílico , Molécula de Interacción Estromal 1 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Homeostasis , Mucosa Intestinal , Sulfato de Dextran , Ratones Endogámicos C57BL , Anhidrasa Carbónica IX , Antígenos de Neoplasias , Proteínas de Neoplasias
3.
Pharmacol Res ; 179: 106205, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35381340

RESUMEN

Diabetic cardiovascular complications contribute more than half of diabetes mortality. Endothelial damage and subsequent pathological changes play a key role in this process. Phloretin, a plant-derived dihydrochalcone compound, was reported to have the activities in regulating metabolism homeostasis and anti-inflammation. However, its effects and the mechanism on early stage endothelial injury caused by diabetes are not clear yet. In our present study, human umbilical vein endothelial cells (HUVECs) were stimulated by high glucose or advanced glycation end products (AGEs) to induce endothelial damage, and streptozotocin (STZ) -induced diabetes mouse model was used for in vivo study. Our results showed that phloretin effectively reduced endothelial damage marker monocyte chemotactic protein-1 (MCP1) as well as pro-calcification factors bone morphogenetic protein-2 (BMP2) and receptor activator of NF-κB ligand (RANKL) expression, reversed the increased vimentin and decreased CD31 dose-dependently in vitro and in vivo. Phloretin had no effect on blood glucose level. However, it ameliorated endothelial injury and vascular fibrosis in diabetic mice. Further experiments revealed that phloretin could enhance AMP activated protein kinase (AMPK) activation and upregulate peroxidase proliferator activated receptor-gamma coactivator-lα (PGC1α) level, and inhibit the activation of TGFß-Smad2-Snail signalling pathway which was abrogated by AMPK inhibitor, providing a rational mechanism that AMPK activation was required for the effects of phloretin on endothelial injury and endothelial-mesenchymal transformation (EndMT). Our data reveal a new role of phloretin in protection of diabetic endothelial damage via AMPK-dependent anti-EndMT activation, and also provide a potential therapeutic way for diabetic endothelial damage and its subsequent cardiovascular complications.


Asunto(s)
Diabetes Mellitus Experimental , Floretina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Floretina/farmacología , Floretina/uso terapéutico , Transducción de Señal
4.
Pharmacol Res ; 182: 106309, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716915

RESUMEN

The pathological features of inflammatory bowel disease necessitate therapeutic strategies aimed at restoring intestinal mucosal barrier function in addition to controlling inflammation. Paeoniflorin, a bioactive herbal constituent isolated from the root of Paeonia albiflora Pall, has been reported to protect against acute colitis in mice. However, the direct molecular target of paeoniflorin in preventing colitis remains elusive. Here, we evaluated the therapeutical effects of Paeoniflorin using IL-10-/- chronic colitis model, and explored the precise mechanism of action involved. Our results demonstrated that intragastric administration of Paeoniflorin significantly ameliorated inflammatory response and restored the aberrant intestinal proliferation and differentiation in IL-10-/-colitis mice. By utilizing a chemical biology approach, we identified C1qa, a crucial component of C1q, is the direct target of Paeoniflorin. Binding of Paeoniflorin to C1qa prevented the cleavage of C1q on macrophages, resulting in the aggregation of surface membrane-anchored C1q and the diminished C1q secretion. The excessive surface membrane-anchored C1q significantly enhanced the phagocytic capability of macrophages and promoted the elimination of infiltrated bacteria and inflammatory cells in mouse colon. The reduced C1q secretion conferred by Paeoniflorin dampened Wnt/ß-catenin signaling activation, thereby rectifying the aberrant proliferation and differentiation of intestinal stem cells (ISCs). In summary, our study demonstrates that Paeoniflorin can orchestrate mucosal healing and intestinal inflammation elimination through C1q-bridged macrophage-ISCs crosstalk, highlighting a novel strategy to treat chronic colitis by restoring mucosal homeostasis via targeting C1q.


Asunto(s)
Colitis , Interleucina-10 , Animales , Proliferación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Complemento C1q/metabolismo , Complemento C1q/uso terapéutico , Sulfato de Dextran , Modelos Animales de Enfermedad , Glucósidos , Inflamación/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Monoterpenos , Células Madre/metabolismo
5.
Pharmacol Res ; 169: 105679, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34010669

RESUMEN

Sorting nexin 10 (SNX10) has been reported as a critical regulator in macrophage function, and germline SNX10 knockout effectively alleviated mouse colitis. Here, we investigated the precise role of SNX10 in inflammatory responses in macrophages in mouse colitis, and explored the druggability of SNX10 as a therapeutic target for inflammatory bowel disease (IBD). Our results revealed that myeloid-specific SNX10 deletion alleviated inflammation and pathological damage induced by dextran sulfate sodium (DSS). In vitro experiments showed that SNX10 deletion contributed to inflammation elimination by inhibiting PIKfyve-mediated TANK-binding kinase 1 (TBK1) /c-Rel signaling activation. Further study provided rational mechanism that SNX10 was required for the recruitment of PIKfyve to the TRIF-positive endosomes, through which PIKfyve activated TBK1/c-Rel for LPS-induced inflammation response. Based on the structure of SNX10, we discovered a new small-molecule inhibitor DC-SX029, which targeted SNX10 to block the SNX10-PIKfyve interaction, thereby decreased the TBK1/c-Rel signaling activation. Additionally, therapeutic efficiency of DC-SX029 was evaluated in both DSS-induced and IL10-deficient mouse colitis models. Our data demonstrate a new mechanism by which SNX10-PIKfyve interaction regulates LPS-induced inflammation response in macrophages via the TBK1/c-Rel signaling pathway. In vivo and in vitro pharmacological studies of SNX10 protein-protein interaction (PPI) inhibitor DC-SX029 demonstrate the feasibility of targeting SNX10 in IBD treatment.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Transducción de Señal/efectos de los fármacos , Nexinas de Clasificación/efectos de los fármacos , Animales , Colitis/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nexinas de Clasificación/metabolismo
6.
Phytother Res ; 34(5): 1175-1184, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31823428

RESUMEN

In this study, we investigated the effect of astragaloside IV on skeletal muscle energy metabolism disorder caused by statins and explored the possible mechanisms. High-fat diet-fed apolipoprotein E knockout (ApoE-/- ) mice performed aerobic exercise and were administered simvastatin, simvastatin + trimetazidine, or simvastatin + astragaloside IV by gavage. At the end of treatment, exercise performance was assessed by the hanging grid test, forelimb grip test, and running tolerance test. Moreover, plasma lipid and creatine kinase concentrations were measured. After sacrifice, the gastrocnemius muscle was used to assess muscle morphology, and energy metabolism was evaluated by determining the concentration of lactic acid and the storage capacity of adenosine triphosphate and glycogen. Mitochondrial function was assessed by measuring mitochondrial complex III and citrate synthase activity and membrane potential. In addition, oxidative stress was assessed by determining the level of hydrogen peroxide. Finally, using western blotting and reverse transcription polymerase chain reaction, we explored the mechanism of astragaloside IV in alleviating simvastatin-induced muscle injury. Our results demonstrated that astragaloside IV reversed simvastatin-induced muscle injury without affecting the lipid-lowering effect of simvastatin. Moreover, astragaloside IV promoted the phosphorylation of AMPK and activated PGC-1α, which upregulated the expression of NRF1 to enhance energy metabolism and inhibit skeletal muscle cell apoptosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Saponinas , Simvastatina , Triterpenos , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Músculo Esquelético/lesiones , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal , Simvastatina/efectos adversos , Triterpenos/farmacología , Triterpenos/uso terapéutico
7.
Cancer Sci ; 109(10): 3272-3284, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30039622

RESUMEN

Acetylation plays an important role in regulating the chaperone activity of heat shock protein 90 (Hsp90) during malignant transformation through the stabilization and conformational maturation of oncogenic proteins. However, the functional acetylation sites, potential anticancer drug targets, are still emerging. We found that acetylation at K292 in Hsp90α is critical for the development and treatment of breast cancer. Acetylation at K292 not only augments the affinity of Hsp90 to ATP, cochaperones, and client proteins but it also promotes cancer cell colony formation, migration, and invasion in vitro as well as tumor growth in vivo. Importantly, K292-acetylated Hsp90 has been validated as an exciting anticancer drug target by interfering with the complex formation between K292-acetylated Hsp90 and cochaperone Cdc37, leading to diminishment of kinase client maturation and proteasome-dependent degradation of kinase substrates. Furthermore, we showed that simvastatin prevented, whereas LBH589 promoted, the progression of Hsp90 chaperone cycling and client maturation, resulting in an increment of cell apoptosis by the combination of simvastatin and LBH589 in a mouse xenograft model. These data suggest that simvastatin is a novel Hsp90 inhibitor to disrupt the formation of the K292-acetylated Hsp90/Cdc37 complex in triple-negative breast cancer cells. The combination of simvastatin with LBH589 could be used as a novel therapeutic strategy for triple-negative breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetilación/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Indoles/farmacología , Indoles/uso terapéutico , Lisina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Panobinostat , Unión Proteica/efectos de los fármacos , Simvastatina/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Phytomedicine ; 130: 155556, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38810552

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease that affects multiple organs and cause a wide range of severe clinical manifestations, including lupus nephritis (LN), which is a major risk factor for morbidity and mortality in individual with SLE. Ursolic acid (UA) is a natural compound with favorable anti-inflammatory properties and has been employed to treat multiple disease, including inflammatory diseases, diabetes, and Parkinson's disease. However, its therapeutic potential on LN and the underlying mechanisms remains unclear. PURPOSE: This aim of this study was to investigate the impact of UA on LN and its underlying mechanism. METHODS: MRL/lpr lupus-prone mouse model was used and UA was administered orally for 8 weeks. Dexamethasone was used as a positive control. After 8 weeks of administration, the spleen-to-body-weight ratio, renal function, urine albumin excretion, cytokines levels, and the deposition of immune complex were measured. The primary mouse glomerular mesangial cells (GMCs) and SV40-MES-13 were stimulated by lipopolysaccharide (LPS), either alone or in combination with nigericin, to establish an in vitro model. The activation of NLRP3 inflammasome were investigated both in vivo and in vitro using qRT-PCR, immunoblotting, and immunofluorescence. RESULTS: Our results revealed that UA prominently alleviated LN in MRL/lpr lupus-prone mice, leading to a significant reduction in proteinuria production, infiltration of immune cells infiltration, and histopathological damage in the renal tissue. In addition, UA exerted inhibitory effects on the secretion of IL-1ß, IL-18, and caspase-1, pyroptosis, and ASC speck formation in primary mouse GMCs and SV40-MES-13 cells. Furthermore, UA facilitated the degradation of NLRP3 by suppressing SUMO1-mediated SUMOylation of NLRP3. CONCLUSION: UA possess a therapeutical effect on LN in MRL/lpr mice by enhancing the degradation of NLRP3 through inhibition of SUMO1-mediated SUMOylation of NLRP3. Our findings provide a basis for proposing UA as a potential candidate for the treatment of LN.


Asunto(s)
Inflamasomas , Nefritis Lúpica , Ratones Endogámicos MRL lpr , Proteína con Dominio Pirina 3 de la Familia NLR , Triterpenos , Ácido Ursólico , Animales , Triterpenos/farmacología , Nefritis Lúpica/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Antiinflamatorios/farmacología , Sumoilación/efectos de los fármacos
9.
Phytomedicine ; 129: 155615, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38615493

RESUMEN

BACKGROUND: Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE: Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN: A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS: MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS: GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION: CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Ratones , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Células HCT116 , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Masculino , Serina-Treonina Quinasas TOR/metabolismo
10.
Sci Adv ; 9(35): eadh5016, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37647408

RESUMEN

Intestinal stem cell (ISC) is a promising therapeutic target for inflammatory bowel disease. Cholesterol availability is critical for ISC stemness. Low plasma cholesterol is a typical feature of Crohn's disease (CD); however, its impact on mucosal healing remains unclear. Here, we identified an essential role of sorting nexin 10 (SNX10) in maintaining the stemness of ISCs. SNX10 expression in intestinal tissues positively correlates with the severity of human CD and mouse colitis. Conditional SNX10 knockout in intestinal epithelial cells or ISCs promotes intestinal mucosal repair by maintaining the ISC population associated with increased intracellular cholesterol synthesis. Disassociation of ERLIN2 with SCAP by SNX10 deletion enhances the activation of SREBP2, resulting in increased cholesterol biosynthesis. DC-SX029, a small-molecule inhibitor of SNX10, was used to verify the druggable potential of SNX10 for the treatment of patients with CD. Our study provides a strategy for mucosal healing through SREBP2-mediated stemness restoration of ISCs.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nexinas de Clasificación , Animales , Humanos , Ratones , Mucosa Intestinal , Intestinos , Nexinas de Clasificación/genética , Células Madre
11.
Chin J Integr Med ; 28(7): 586-593, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35319073

RESUMEN

OBJECTIVE: To investigate the therapeutic effect of Yixin Ningshen Tablet (YXNS) on comorbidity of myocardial infarction (MI) and depression in rats and explore the underlying mechanism. METHODS: The Sprague-Dawley rats were randomly divided into 5 groups with 7 rats in each group according to their weights, including control, model, fluoxetine (FLXT, 10 mg/kg), low-dose YXNS (LYXNS, 100 mg/kg), and high-dose YXNS (HYXNS, 300 mg/kg) groups. All rats were pretreated with corresponding drugs for 12 weeks. The rat model of MI and depression was constructed by ligation of left anterior descending coronary artery and chronic mild stress stimulation. The echocardiography, sucrose preference test, open field test, and forced swim test were performed. Myocardial infarction (MI) area and myocardial apoptosis was also detected. Serum levels of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), adrenocorticotrophic hormone (ACTH), corticosterone (CORT), and norepinephrine (NE) were determined by enzyme linked immunosorbent assay. The proteins of adenosine 5'-monophosphate -activated protein kinase (AMPK), p-AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and nuclear respiratory factor 1 (NRF1) in heart were detected by Western blot analysis. The expression levels of TNF-α, IL-6, indoleamine 2,3-dioxygenase (IDO1), kynurenine 3-monooxygenase (KMO), and kynureninase (KYNU) in hippocampus were detected by real-time quantitative polymerase chain reaction. RESULTS: Compared with the model group, the cardiac function of rats treated with YXNS improved significantly (P<0.01). Meanwhile, YXNS effectively reduced MI size and cardiomyocytes apoptosis of rats (P<0.01 or P<0.05), promoted AMPK phosphorylation, and increased PGC-1α protein expression (P<0.01 or P<0.05). HYXNS significantly increased locomotor activity of rats, decreased the levels of TNF-α, IL-6 and IL-1ß, and increased the serum levels of 5-HT, NE, ACTH, and CORT (all P<0.05). Moreover, HYXNS decreased the mRNA expressions of IDO1, KMO and KYNU (P<0.05). CONCLUSIONS: YXNS can relieve MI by enhancing myocardial energy metabolism. Meanwhile, YXNS can alleviate depression by resisting inflammation and increasing availability of monoamine neurotransmitters. It may be used as a potential drug to treat comorbidity of MI and depression.


Asunto(s)
Infarto del Miocardio , Factor de Necrosis Tumoral alfa , Proteínas Quinasas Activadas por AMP/metabolismo , Hormona Adrenocorticotrópica , Animales , Comorbilidad , Depresión/complicaciones , Depresión/tratamiento farmacológico , Metabolismo Energético , Interleucina-6/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Neurotransmisores , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo , Comprimidos , Factor de Necrosis Tumoral alfa/metabolismo
12.
Phytomedicine ; 87: 153590, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34033998

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is an autoimmune disease. The pathogenesis of IBD is complicated and intestinal mucosal barrier damage is considered as the trigger factor for the initiation and recurrence of IBD. Total Glucosides of Paeony (TGP) has shown good inhibitory effects on immune-inflammation in clinic studies. However, its effect and mechanism on IBD are largely unknown. PURPOSE: The purpose of this study is to evaluate the effect and mechanism of TGP on IBD. STUDY DESIGN: DSS-induced colitis mouse model was used. TGP was given by gavage. Caco-2 cells were stimulated by outer membrane vesicles (OMV) to establish an in vitro model. METHODS: C57BL/6 mice were divided into normal control group, model group, mesalazine group, paeoniflorin (PA) group, high-dose group of TGP, and low-dose group of TGP. The model was induced with 2.5% DSS for 7 days, and TGP was intragastrically administered for 10 days. The therapeutic effect of TGP was evaluated by symptoms, histochemical analysis, RT-qPCR and ELISA. The mechanism was explored by intestinal permeability, Western blot and immunofluorescence in vivo and in vitro. RESULTS: Our results showed that TGP could significantly improve the symptoms and pathological changes, with reduced levels of TNF-α, IL-17A, IL-23 and IFN-γ in the colon tissues and serum under a dose-dependent manner. TGP also reduced the intestinal permeability and restored the protein expression of tight junction and adherens junction proteins of intestinal epithelial cells in vivo and in vitro. Furthermore, TGP could inhibit the expression of p-Lyn and Snail and prevent Snail nuclear localization, thereby maintaining tight and adherens junctions. CONCLUSION: TGP effectively improves the symptoms of DSS-induced colitis in mice, protects the intestinal epithelial barrier by inhibiting the Lyn/Snail signaling pathway, and maybe a promise therapeutic agent for IBD treatment.


Asunto(s)
Colitis/tratamiento farmacológico , Glucósidos/farmacología , Paeonia/química , Familia-src Quinasas/metabolismo , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Glucósidos/química , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Permeabilidad , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
13.
Biochem Pharmacol ; 162: 142-153, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30352233

RESUMEN

Cancer cells are continuously challenged by adverse environmental stress and adopt diverse strategies to survive. Hsp70 plays pivotal roles in invasion, migration, drug resistance, and the survival of tumor cells. Hsp70 functions as molecular chaperone to protect tumor cells from stress-induced cell death. Hsp70 acetylation alters its chaperone activity in cell death pathways, but its relevance in the process of cell death and the underlying mechanisms involved are not well understood. In this study, we demonstrated that vincristine induces mitophagy via the disruption of Hsp70 binding with Sirt2, leading to Hsp70 acetylation at K126 and elevated sequestration of Bcl2 by Hsp70 for autophagosome creation. Acetylation at K126 significantly changes the physiological function of Hsp70 compared to acetylation at other sites. It also attenuates the protein folding and renaturation function of Hsp70 by altering the binding co-chaperones. In addition, acetylation at K126 inhibits Hsp70-mediated tumor cell invasion and migration, and the binding of Hsp70 to AIF1 and Apaf1 for promoting mitochondrial-mediated apoptosis. In conclusion, this study describes the molecular mechanism of vincristine induction of cell apoptosis and mitophagy via ablation of Sirt2 induced Hsp70 acetylation at K126 in MDA-MB-231 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Mitofagia/efectos de los fármacos , Sirtuina 2/metabolismo , Vincristina/farmacología , Acetilación/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Mitofagia/fisiología , Sirtuina 2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA